Packt.Step.by.Step.Machine.Learning.with.Python
    
    File List
    
        
            
                
                    - 6 - Click-Through Prediction with Logistic Regression#/Click-Through Prediction with Logistic Regression by Gradient Descent.mp4  75.3 MB
 
                
                    - 3 - Spam Email Detection with Naïve Bayes#/The Naïve Bayes Implementation.mp4  57.4 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Touring Powerful NLP Libraries in Python.mp4  40.3 MB
 
                
                    - 6 - Click-Through Prediction with Logistic Regression#/Logistic Regression Classifier.mp4  37.4 MB
 
                
                    - 3 - Spam Email Detection with Naïve Bayes#/Classifier Performance Evaluation.mp4  37.0 MB
 
                
                    - 5 - Click-Through Prediction with Tree-Based Algorithms/Decision Tree Classifier.mp4  36.7 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/News topic Classification with Support Vector Machine.mp4  36.4 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Stock Price Prediction with Regression Algorithms.mp4  34.2 MB
 
                
                    - 8 - Best Practices/Best Practices in Data Preparation Stage.mp4  31.9 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Linear Regression.mp4  30.3 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Decision Tree Regression.mp4  27.4 MB
 
                
                    - 5 - Click-Through Prediction with Tree-Based Algorithms/Click-Through Prediction with Decision Tree.mp4  25.0 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Predicting Stock Price with Regression Algorithms.mp4  24.4 MB
 
                
                    - 5 - Click-Through Prediction with Tree-Based Algorithms/The Implementations of Decision Tree.mp4  22.8 MB
 
                
                    - 1 - Getting Started with Python and Machine Learning/Installing Software and Setting Up.mp4  22.0 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/Fetal State Classification with SVM.mp4  21.8 MB
 
                
                    - 6 - Click-Through Prediction with Logistic Regression#/One-Hot Encoding - Converting Categorical Features to Numerical.mp4  21.4 MB
 
                
                    - 8 - Best Practices/Best Practices in the Training Sets Generation Stage.mp4  20.5 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Thinking about Features.mp4  20.3 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/The Implementations of SVM.mp4  19.7 MB
 
                
                    - 5 - Click-Through Prediction with Tree-Based Algorithms/Random Forest - Feature Bagging of Decision Tree.mp4  18.3 MB
 
                
                    - 3 - Spam Email Detection with Naïve Bayes#/Model Tuning and cross-validation.mp4  18.3 MB
 
                
                    - 1 - Getting Started with Python and Machine Learning/The Course Overview.mp4  17.2 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/Recap and Inverse Document Frequency.mp4  16.6 MB
 
                
                    - 6 - Click-Through Prediction with Logistic Regression#/Feature Selection via Random Forest.mp4  16.0 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Understanding NLP.mp4  16.0 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/Choosing Between the Linear and the RBF Kernel.mp4  14.2 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Getting the Newsgroups Data.mp4  14.1 MB
 
                
                    - 8 - Best Practices/Best Practices in the Deployment and Monitoring Stage.mp4  13.9 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Topic Modeling.mp4  13.0 MB
 
                
                    - 1 - Getting Started with Python and Machine Learning/Introduction to Machine Learning.mp4  13.0 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Regression Performance Evaluation.mp4  12.7 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Data Acquisition and Feature Generation.mp4  12.3 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/The Kernels of SVM.mp4  11.8 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Visualization.mp4  11.5 MB
 
                
                    - 5 - Click-Through Prediction with Tree-Based Algorithms/Brief Overview of Advertising Click-Through Prediction.mp4  11.0 MB
 
                
                    - 8 - Best Practices/Best Practices in the Model Training, Evaluation, and Selection Stage.mp4  10.8 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Clustering.mp4  10.4 MB
 
                
                    - 4 - News Topic Classification with Support Vector Machine/The Mechanics of SVM.mp4  9.2 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Data Preprocessing.mp4  9.1 MB
 
                
                    - 3 - Spam Email Detection with Naïve Bayes#/Getting Started with Classification.mp4  8.8 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Support Vector Regression.mp4  8.1 MB
 
                
                    - 3 - Spam Email Detection with Naïve Bayes#/The Mechanics of Naïve Bayes.mp4  7.3 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Brief Overview of the Stock Market And Stock Price.mp4  7.1 MB
 
                
                    - 3 - Spam Email Detection with Naïve Bayes#/Exploring Naïve Bayes.mp4  5.1 MB
 
                
                    - V09050_Code/V09050_Code/Section 04/CTG.xls  1.7 MB
 
                
                    - 2 - Exploring the 20 Newsgroups Dataset with Text Analysis Algorithms/Machine Learning with Python.mp4  1.6 MB
 
                
                    - 7 - Stock Price Prediction with Regression Algorithms/Machine Learning with Python.mp4  1.6 MB
 
                
                    - V09050_Code/V09050_Code/Section 07/198810101_20151231.csv  543.8 KB
 
                
                    - V09050_Code/V09050_Code/Section 03/email_spam.py  10.3 KB
 
                
                    - V09050_Code/V09050_Code/Section 05/1decision_tree_submit.py  9.8 KB
 
                
                    - V09050_Code/V09050_Code/Section 06/3logistic_regression_from_scratch.py  7.6 KB
 
                
                    - V09050_Code/V09050_Code/Section 07/1stock_price_prediction.py  7.5 KB
 
                
                    - V09050_Code/V09050_Code/Section 07/3decision_tree_regression.py  7.1 KB
 
                
                    - V09050_Code/V09050_Code/Section 03/.DS_Store  6.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 04/.DS_Store  6.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 05/.DS_Store  6.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 06/.DS_Store  6.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 07/.DS_Store  6.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 08/.DS_Store  6.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 06/5scikit_logistic_regression.py  5.2 KB
 
                
                    - V09050_Code/V09050_Code/Section 04/2topic_categorization.py  5.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 07/2linear_regression.py  4.7 KB
 
                
                    - V09050_Code/V09050_Code/Section 02/.ropeproject/config.py  3.4 KB
 
                
                    - V09050_Code/V09050_Code/Section 08/1imputation.py  3.3 KB
 
                
                    - V09050_Code/V09050_Code/Section 04/1email_spam_tfidf_submit.py  2.6 KB
 
                
                    - V09050_Code/V09050_Code/Section 06/1one_hot_encode.py  2.4 KB
 
                
                    - V09050_Code/V09050_Code/Section 02/.ropeproject/objectdb  2.2 KB
 
                
                    - V09050_Code/V09050_Code/Section 05/2avazu_ctr.py  2.1 KB
 
                
                    - V09050_Code/V09050_Code/Section 06/4random_forest_feature_selection.py  1.7 KB
 
                
                    - V09050_Code/V09050_Code/Section 04/4ctg.py  1.1 KB
 
                
                    - V09050_Code/V09050_Code/Section 04/3plot_rbf_kernels.py  1.1 KB
 
                
                    - V09050_Code/V09050_Code/Section 08/2feature_selection.py  1.1 KB
 
                
                    - V09050_Code/V09050_Code/Section 08/5save_reuse_monitor_model.py  1.0 KB
 
                
                    - V09050_Code/V09050_Code/Section 02/.ropeproject/globalnames  1011 bytes
 
                
                    - V09050_Code/V09050_Code/Section 02/4topic_model.py  998 bytes
 
                
                    - V09050_Code/V09050_Code/Section 02/3post_clustering.py  919 bytes
 
                
                    - V09050_Code/V09050_Code/Section 06/2logistic_function.py  833 bytes
 
                
                    - V09050_Code/V09050_Code/Section 02/2clean_words.py  723 bytes
 
                
                    - V09050_Code/V09050_Code/Section 07/20051201_20151210.csv  644 bytes
 
                
                    - V09050_Code/V09050_Code/Section 08/3dimensionality_reduction.py  635 bytes
 
                
                    - V09050_Code/V09050_Code/Section 02/1histogram.py  529 bytes
 
                
                    - V09050_Code/V09050_Code/Section 07/4support_vector_regression.py  439 bytes
 
                
                    - V09050_Code/V09050_Code/Section 08/4generic_feature_engineering.py  344 bytes
 
                
                    - V09050_Code/V09050_Code/Section 02/0_getting.py  303 bytes
 
                
                    - V09050_Code/V09050_Code/Section 02/.ropeproject/history  14 bytes
 
                
            
        
     
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.