[FreeCoursesOnline.Me] [LYNDA] Applied Machine Learning Foundations [FCO]
    
    File List
    
        
            
                
                    - 3.2. Exploratory Data Analysis and Data Cleaning/12.Exploring continuous features.mp4  24.2 MB
- 6.5. End-to-End Pipeline/35.Final model selection and evaluation on test set.mp4  24.1 MB
- 1.Introduction/01.Leveraging machine learning.mp4  19.1 MB
- 6.5. End-to-End Pipeline/34.Evaluate results on validation set.mp4  18.5 MB
- 6.5. End-to-End Pipeline/33.Tune hyperparameters.mp4  18.1 MB
- 3.2. Exploratory Data Analysis and Data Cleaning/13.Plotting continuous features.mp4  17.9 MB
- 3.2. Exploratory Data Analysis and Data Cleaning/15.Exploring categorical features.mp4  15.1 MB
- 3.2. Exploratory Data Analysis and Data Cleaning/14.Continuous data cleaning.mp4  15.1 MB
- 6.5. End-to-End Pipeline/32.Fit a basic model using cross-validation.mp4  14.9 MB
- 3.2. Exploratory Data Analysis and Data Cleaning/16.Plotting categorical features.mp4  14.3 MB
- 6.5. End-to-End Pipeline/29.Clean continuous features.mp4  13.8 MB
- 4.3. Measuring Success/19.Split data for train_validation_test set.mp4  13.0 MB
- 2.1. Machine Learning Basics/07.Why Python.mp4  12.1 MB
- 3.2. Exploratory Data Analysis and Data Cleaning/17.Categorical data cleaning.mp4  11.0 MB
- 6.5. End-to-End Pipeline/30.Clean categorical features.mp4  10.6 MB
- 2.1. Machine Learning Basics/09.Demos of machine learning in real life.mp4  10.6 MB
- 6.5. End-to-End Pipeline/31.Split data into train_validation_test set.mp4  9.7 MB
- 5.4. Optimizing a Model/26.Hyperparameter tuning.mp4  9.6 MB
- 4.3. Measuring Success/18.Why do we split up our data.mp4  9.5 MB
- 4.3. Measuring Success/20.What is cross-validation.mp4  9.0 MB
- 2.1. Machine Learning Basics/10.Common challenges.mp4  9.0 MB
- 2.1. Machine Learning Basics/06.What kind of problems can this help you solve.mp4  8.3 MB
- 5.4. Optimizing a Model/22.Bias_Variance tradeoff.mp4  8.1 MB
- 4.3. Measuring Success/21.Establish an evaluation framework.mp4  7.0 MB
- 2.1. Machine Learning Basics/08.Machine learning vs. Deep learning vs. Artificial intelligence.mp4  6.9 MB
- 7.Conclusion/36.Next steps.mp4  6.2 MB
- 2.1. Machine Learning Basics/05.What is machine learning.mp4  6.0 MB
- 5.4. Optimizing a Model/25.Finding the optimal tradeoff.mp4  5.4 MB
- 3.2. Exploratory Data Analysis and Data Cleaning/11.Why do we need to explore and clean our data.mp4  5.2 MB
- 5.4. Optimizing a Model/24.What is overfitting.mp4  4.6 MB
- 1.Introduction/02.What you should know.mp4  4.5 MB
- 5.4. Optimizing a Model/27.Regularization.mp4  4.4 MB
- 5.4. Optimizing a Model/23.What is underfitting.mp4  4.0 MB
- Exercise Files/Ex_Files_Applied_Machine_Learning.zip  3.4 MB
- 1.Introduction/04.Using the exercise files.mp4  3.1 MB
- 6.5. End-to-End Pipeline/28.Overview of the process.mp4  2.6 MB
- 1.Introduction/03.What tools you need.mp4  1.6 MB
- FreeCoursesOnline.Me.html  108.3 KB
- FTUForum.com.html  100.4 KB
- Discuss.FTUForum.com.html  31.9 KB
- How you can help Team-FTU.txt  235 bytes
- NulledPremium.com.url  163 bytes
- Torrent Downloaded From GloDls.to.txt  84 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.