Udemy - [2025] Tensorflow 2 Deep Learning & Artificial Intelligence (1.2025)
File List
- 8 - Natural Language Processing (NLP)/4 -Text Classification with LSTMs.mp4 354.9 MB
- 20 - Setting up your Environment (FAQ by Student Request)/3 -Anaconda Environment Setup.mp4 348.6 MB
- 8 - Natural Language Processing (NLP)/6 -Text Classification with CNNs.mp4 315.4 MB
- 10 - Transfer Learning for Computer Vision/7 -Transfer Learning Code (pt 1).mp4 306.3 MB
- 10 - Transfer Learning for Computer Vision/8 -Transfer Learning Code (pt 2).mp4 298.7 MB
- 3 - Machine Learning and Neurons/5 -Regression Notebook.mp4 247.7 MB
- 6 - Convolutional Neural Networks/11 -Improving CIFAR-10 Results.mp4 242.5 MB
- 20 - Setting up your Environment (FAQ by Student Request)/4 -Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.mp4 216.6 MB
- 20 - Setting up your Environment (FAQ by Student Request)/2 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 210.1 MB
- 3 - Machine Learning and Neurons/3 -Classification Notebook.mp4 184.8 MB
- 8 - Natural Language Processing (NLP)/3 -Text Preprocessing.mp4 175.5 MB
- 14 - Advanced Tensorflow Usage/2 -Tensorflow Serving pt 2.mp4 172.8 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/12 -Demo of the Long Distance Problem.mp4 157.9 MB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 149.8 MB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 147.5 MB
- 5 - Interlude tf.data/2 -Sample Code for tf.data.mp4 147.1 MB
- 18 - Course Conclusion/2 -What to Learn Next.mp4 141.3 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/6 -Proof that using Jupyter Notebook is the same as not using it.mp4 119.0 MB
- 2 - Google Colab/3 -Uploading your own data to Google Colab.mp4 113.7 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/17 -Stock Return Predictions using LSTMs (pt 3).mp4 109.2 MB
- 4 - Feedforward Artificial Neural Networks/11 -ANN for Regression.mp4 108.9 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/4 -How to Code Yourself (part 1).mp4 103.7 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/7 -RNN for Time Series Prediction.mp4 95.0 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/3 -Autoregressive Linear Model for Time Series Prediction.mp4 94.4 MB
- 10 - Transfer Learning for Computer Vision/5 -Transfer Learning Code (pt 1) (Legacy).mp4 86.9 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/8 -Code pt 4.mp4 86.6 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/15 -Stock Return Predictions using LSTMs (pt 1).mp4 85.8 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/8 -Paying Attention to Shapes.mp4 83.7 MB
- 2 - Google Colab/1 -Intro to Google Colab, how to use a GPU or TPU for free.mp4 83.2 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/11 -A More Challenging Sequence.mp4 82.5 MB
- 14 - Advanced Tensorflow Usage/6 -Using the TPU.mp4 78.8 MB
- 9 - Recommender Systems/2 -Recommender Systems with Deep Learning Code.mp4 78.0 MB
- 11 - GANs (Generative Adversarial Networks)/2 -GAN Code.mp4 77.8 MB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/5 -Common Beginner Questions What if I'm advanced.mp4 77.3 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/1 -Sequence Data.mp4 75.2 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/7 -Code pt 3.mp4 71.9 MB
- 10 - Transfer Learning for Computer Vision/1 -Transfer Learning Theory.mp4 71.7 MB
- 11 - GANs (Generative Adversarial Networks)/1 -GAN Theory.mp4 70.7 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/9 -GRU and LSTM (pt 1).mp4 70.4 MB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 69.1 MB
- 12 - Deep Reinforcement Learning (Theory)/2 -Elements of a Reinforcement Learning Problem.mp4 68.5 MB
- 6 - Convolutional Neural Networks/5 -CNN Architecture.mp4 68.3 MB
- 2 - Google Colab/2 -Tensorflow 2 in Google Colab.mp4 67.0 MB
- 4 - Feedforward Artificial Neural Networks/10 -ANN for Image Classification.mp4 65.1 MB
- 6 - Convolutional Neural Networks/6 -CNN Code Preparation.mp4 65.0 MB
- 9 - Recommender Systems/1 -Recommender Systems with Deep Learning Theory.mp4 63.3 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/6 -Code pt 2.mp4 61.0 MB
- 10 - Transfer Learning for Computer Vision/6 -Transfer Learning Code (pt 2) (Legacy).mp4 60.4 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/5 -Recurrent Neural Networks.mp4 60.0 MB
- 4 - Feedforward Artificial Neural Networks/2 -Beginners Rejoice The Math in This Course is Optional.mp4 58.5 MB
- 15 - Low-Level Tensorflow/4 -Build Your Own Custom Model.mp4 58.1 MB
- 15 - Low-Level Tensorflow/3 -Variables and Gradient Tape.mp4 57.4 MB
- 6 - Convolutional Neural Networks/7 -CNN for Fashion MNIST.mp4 57.0 MB
- 4 - Feedforward Artificial Neural Networks/5 -Activation Functions.mp4 57.0 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/2 -How to use Github & Extra Coding Tips (Optional).mp4 56.4 MB
- 14 - Advanced Tensorflow Usage/5 -Training with Distributed Strategies.mp4 55.3 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/5 -Code pt 1.mp4 55.0 MB
- 3 - Machine Learning and Neurons/1 -What is Machine Learning.mp4 54.6 MB
- 18 - Course Conclusion/1 -How to get the Tensorflow Developer Certificate.mp4 52.7 MB
- 8 - Natural Language Processing (NLP)/2 -Code Preparation (NLP).mp4 52.6 MB
- 6 - Convolutional Neural Networks/4 -Convolution on Color Images.mp4 52.4 MB
- 15 - Low-Level Tensorflow/2 -Constants and Basic Computation.mp4 50.2 MB
- 6 - Convolutional Neural Networks/1 -What is Convolution (part 1).mp4 50.0 MB
- 4 - Feedforward Artificial Neural Networks/7 -How to Represent Images.mp4 48.8 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/3 -Beginner's Coding Tips.mp4 48.8 MB
- 17 - In-Depth Gradient Descent/5 -Adam (pt 1).mp4 48.5 MB
- 3 - Machine Learning and Neurons/9 -Saving and Loading a Model.mp4 47.2 MB
- 23 - Appendix FAQ Finale/2 -BONUS.mp4 46.5 MB
- 1 - Welcome/2 -Outline.mp4 45.1 MB
- 12 - Deep Reinforcement Learning (Theory)/14 -How to Learn Reinforcement Learning.mp4 44.2 MB
- 12 - Deep Reinforcement Learning (Theory)/9 -Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4 44.1 MB
- 12 - Deep Reinforcement Learning (Theory)/11 -Q-Learning.mp4 43.8 MB
- 3 - Machine Learning and Neurons/11 -Suggestion Box.mp4 43.5 MB
- 17 - In-Depth Gradient Descent/6 -Adam (pt 2).mp4 42.3 MB
- 2 - Google Colab/4 -Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4 41.9 MB
- 12 - Deep Reinforcement Learning (Theory)/12 -Deep Q-Learning DQN (pt 1).mp4 40.5 MB
- 8 - Natural Language Processing (NLP)/1 -Embeddings.mp4 37.9 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/2 -Data and Environment.mp4 37.7 MB
- 4 - Feedforward Artificial Neural Networks/9 -Code Preparation (ANN).mp4 37.2 MB
- 12 - Deep Reinforcement Learning (Theory)/13 -Deep Q-Learning DQN (pt 2).mp4 35.1 MB
- 3 - Machine Learning and Neurons/7 -How does a model learn.mp4 34.9 MB
- 4 - Feedforward Artificial Neural Networks/6 -Multiclass Classification.mp4 34.8 MB
- 14 - Advanced Tensorflow Usage/3 -Tensorflow Lite (TFLite).mp4 34.7 MB
- 12 - Deep Reinforcement Learning (Theory)/1 -Deep Reinforcement Learning Section Introduction.mp4 34.3 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/10 -GRU and LSTM (pt 2).mp4 33.8 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/5 -How to Code Yourself (part 2).mp4 33.4 MB
- 12 - Deep Reinforcement Learning (Theory)/4 -Markov Decision Processes (MDPs).mp4 33.2 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/10 -Help! Why is the code slower on my machine.mp4 33.0 MB
- 4 - Feedforward Artificial Neural Networks/4 -The Geometrical Picture.mp4 32.8 MB
- 3 - Machine Learning and Neurons/8 -Making Predictions.mp4 32.8 MB
- 3 - Machine Learning and Neurons/6 -The Neuron.mp4 31.2 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/16 -Stock Return Predictions using LSTMs (pt 2).mp4 30.7 MB
- 14 - Advanced Tensorflow Usage/4 -Why is Google the King of Distributed Computing.mp4 30.6 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/2 -Forecasting.mp4 30.3 MB
- 12 - Deep Reinforcement Learning (Theory)/6 -Value Functions and the Bellman Equation.mp4 30.0 MB
- 2 - Google Colab/6 -Temporary 403 Errors.mp4 29.9 MB
- 12 - Deep Reinforcement Learning (Theory)/8 -Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4 29.9 MB
- 4 - Feedforward Artificial Neural Networks/3 -Forward Propagation.mp4 29.4 MB
- 12 - Deep Reinforcement Learning (Theory)/3 -States, Actions, Rewards, Policies.mp4 29.4 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/1 -Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4 28.9 MB
- 17 - In-Depth Gradient Descent/3 -Momentum.mp4 28.7 MB
- 1 - Welcome/1 -Introduction.mp4 28.1 MB
- 15 - Low-Level Tensorflow/1 -Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4 27.9 MB
- 17 - In-Depth Gradient Descent/4 -Variable and Adaptive Learning Rates.mp4 27.4 MB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1 -How to Succeed in this Course (Long Version).mp4 27.4 MB
- 10 - Transfer Learning for Computer Vision/2 -Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4 26.9 MB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/7 -Is Theano Dead.mp4 26.8 MB
- 10 - Transfer Learning for Computer Vision/3 -Large Datasets and Data Generators.mp4 25.7 MB
- 6 - Convolutional Neural Networks/9 -Data Augmentation.mp4 25.7 MB
- 12 - Deep Reinforcement Learning (Theory)/10 -Epsilon-Greedy.mp4 25.5 MB
- 8 - Natural Language Processing (NLP)/5 -CNNs for Text.mp4 24.8 MB
- 16 - In-Depth Loss Functions/1 -Mean Squared Error.mp4 24.2 MB
- 17 - In-Depth Gradient Descent/1 -Gradient Descent.mp4 23.8 MB
- 19 - Extras/1 -How to Choose Hyperparameters.mp4 23.8 MB
- 3 - Machine Learning and Neurons/10 -Why Keras.mp4 22.7 MB
- 16 - In-Depth Loss Functions/3 -Categorical Cross Entropy.mp4 22.6 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/14 -RNN for Image Classification (Code).mp4 22.1 MB
- 12 - Deep Reinforcement Learning (Theory)/7 -What does it mean to “learn”.mp4 21.8 MB
- 4 - Feedforward Artificial Neural Networks/1 -Artificial Neural Networks Section Introduction.mp4 20.9 MB
- 17 - In-Depth Gradient Descent/2 -Stochastic Gradient Descent.mp4 20.5 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/13 -RNN for Image Classification (Theory).mp4 20.5 MB
- 1 - Welcome/3 -Where to get the code, notebooks, and data.mp4 20.4 MB
- 6 - Convolutional Neural Networks/8 -CNN for CIFAR-10.mp4 20.0 MB
- 3 - Machine Learning and Neurons/4 -Code Preparation (Regression Theory).mp4 19.8 MB
- 19 - Extras/2 -Get the Exercise Pack for This Course.mp4 19.7 MB
- 14 - Advanced Tensorflow Usage/1 -What is a Web Service (Tensorflow Serving pt 1).mp4 19.5 MB
- 6 - Convolutional Neural Networks/3 -What is Convolution (part 3).mp4 19.3 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/4 -Program Design and Layout.mp4 18.7 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/1 -Reinforcement Learning Stock Trader Introduction.mp4 18.5 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/18 -Other Ways to Forecast.mp4 18.1 MB
- 10 - Transfer Learning for Computer Vision/4 -2 Approaches to Transfer Learning.mp4 17.4 MB
- 6 - Convolutional Neural Networks/2 -What is Convolution (part 2).mp4 16.7 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/3 -Replay Buffer.mp4 16.6 MB
- 6 - Convolutional Neural Networks/10 -Batch Normalization.mp4 15.1 MB
- 20 - Setting up your Environment (FAQ by Student Request)/1 -Pre-Installation Check.mp4 15.1 MB
- 16 - In-Depth Loss Functions/2 -Binary Cross Entropy.mp4 15.0 MB
- 12 - Deep Reinforcement Learning (Theory)/5 -The Return.mp4 14.9 MB
- 5 - Interlude tf.data/1 -Why use tf.data.mp4 13.7 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/6 -RNN Code Preparation.mp4 13.7 MB
- 2 - Google Colab/7 -Course Updates.mp4 11.6 MB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/4 -Proof that the Linear Model Works.mp4 11.5 MB
- 13 - Stock Trading Project with Deep Reinforcement Learning/9 -Reinforcement Learning Stock Trader Discussion.mp4 11.2 MB
- 2 - Google Colab/5 -How to Succeed in This Course.mp4 10.4 MB
- 23 - Appendix FAQ Finale/1 -What is the Appendix.mp4 10.1 MB
- 4 - Feedforward Artificial Neural Networks/8 -Color Mixing Clarification.mp4 3.1 MB
- 8 - Natural Language Processing (NLP)/subtitles/4 -Text Classification with LSTMs.ko_KR.vtt 31.7 KB
- 3 - Machine Learning and Neurons/subtitles/5 -Regression Notebook.es_ES.vtt 31.3 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/4 -Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.es_ES.vtt 29.8 KB
- 3 - Machine Learning and Neurons/5 -Regression Notebook.vtt 29.6 KB
- 8 - Natural Language Processing (NLP)/subtitles/4 -Text Classification with LSTMs.es_ES.vtt 29.3 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.es_ES.vtt 28.9 KB
- 8 - Natural Language Processing (NLP)/subtitles/6 -Text Classification with CNNs.ko_KR.vtt 28.8 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/5 -Common Beginner Questions What if I'm advanced.es_ES.vtt 28.6 KB
- 3 - Machine Learning and Neurons/subtitles/5 -Regression Notebook.ko_KR.vtt 28.5 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/4 -Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.ko_KR.vtt 28.4 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/5 -Common Beginner Questions What if I'm advanced.vtt 28.0 KB
- 20 - Setting up your Environment (FAQ by Student Request)/4 -Installing NVIDIA GPU-Accelerated Deep Learning Libraries on your Home Computer.vtt 27.9 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.7 KB
- 10 - Transfer Learning for Computer Vision/subtitles/8 -Transfer Learning Code (pt 2).es_ES.vtt 27.3 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/2 -Is this for Beginners or Experts Academic or Practical Fast or slow-paced.ko_KR.vtt 27.1 KB
- 10 - Transfer Learning for Computer Vision/subtitles/7 -Transfer Learning Code (pt 1).es_ES.vtt 27.0 KB
- 8 - Natural Language Processing (NLP)/4 -Text Classification with LSTMs.vtt 26.9 KB
- 8 - Natural Language Processing (NLP)/subtitles/6 -Text Classification with CNNs.es_ES.vtt 26.7 KB
- 6 - Convolutional Neural Networks/subtitles/5 -CNN Architecture.es_ES.vtt 26.6 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/5 -Common Beginner Questions What if I'm advanced.ko_KR.vtt 26.4 KB
- 10 - Transfer Learning for Computer Vision/8 -Transfer Learning Code (pt 2).vtt 25.2 KB
- 10 - Transfer Learning for Computer Vision/7 -Transfer Learning Code (pt 1).vtt 25.1 KB
- 3 - Machine Learning and Neurons/subtitles/3 -Classification Notebook.es_ES.vtt 25.0 KB
- 10 - Transfer Learning for Computer Vision/subtitles/8 -Transfer Learning Code (pt 2).ko_KR.vtt 24.8 KB
- 10 - Transfer Learning for Computer Vision/subtitles/7 -Transfer Learning Code (pt 1).ko_KR.vtt 24.6 KB
- 5 - Interlude tf.data/subtitles/2 -Sample Code for tf.data.es_ES.vtt 24.6 KB
- 8 - Natural Language Processing (NLP)/6 -Text Classification with CNNs.vtt 24.6 KB
- 6 - Convolutional Neural Networks/5 -CNN Architecture.vtt 24.4 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/2 -Elements of a Reinforcement Learning Problem.es_ES.vtt 24.2 KB
- 6 - Convolutional Neural Networks/subtitles/5 -CNN Architecture.ko_KR.vtt 24.2 KB
- 8 - Natural Language Processing (NLP)/subtitles/3 -Text Preprocessing.ko_KR.vtt 24.1 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/5 -Recurrent Neural Networks.es_ES.vtt 23.7 KB
- 3 - Machine Learning and Neurons/3 -Classification Notebook.vtt 23.6 KB
- 3 - Machine Learning and Neurons/subtitles/3 -Classification Notebook.ko_KR.vtt 23.0 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/2 -Elements of a Reinforcement Learning Problem.ko_KR.vtt 22.9 KB
- 12 - Deep Reinforcement Learning (Theory)/2 -Elements of a Reinforcement Learning Problem.vtt 22.9 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/1 -Sequence Data.es_ES.vtt 22.6 KB
- 5 - Interlude tf.data/2 -Sample Code for tf.data.vtt 22.5 KB
- 8 - Natural Language Processing (NLP)/subtitles/3 -Text Preprocessing.es_ES.vtt 22.4 KB
- 5 - Interlude tf.data/subtitles/2 -Sample Code for tf.data.ko_KR.vtt 22.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/5 -Recurrent Neural Networks.vtt 22.3 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).es_ES.vtt 22.2 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/12 -Demo of the Long Distance Problem.es_ES.vtt 21.6 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/5 -Recurrent Neural Networks.ko_KR.vtt 21.5 KB
- 6 - Convolutional Neural Networks/subtitles/11 -Improving CIFAR-10 Results.es_ES.vtt 21.4 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/5 -Activation Functions.es_ES.vtt 21.0 KB
- 18 - Course Conclusion/subtitles/1 -How to get the Tensorflow Developer Certificate.es_ES.vtt 21.0 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/9 -GRU and LSTM (pt 1).es_ES.vtt 20.9 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/1 -Sequence Data.vtt 20.9 KB
- 8 - Natural Language Processing (NLP)/3 -Text Preprocessing.vtt 20.8 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -How to Code Yourself (part 1).es_ES.vtt 20.6 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/1 -Sequence Data.ko_KR.vtt 20.4 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).vtt 20.2 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/12 -Demo of the Long Distance Problem.vtt 20.1 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/4 -Machine Learning and AI Prerequisite Roadmap (pt 2).ko_KR.vtt 20.1 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/9 -GRU and LSTM (pt 1).vtt 19.9 KB
- 4 - Feedforward Artificial Neural Networks/5 -Activation Functions.vtt 19.8 KB
- 6 - Convolutional Neural Networks/11 -Improving CIFAR-10 Results.vtt 19.8 KB
- 6 - Convolutional Neural Networks/subtitles/4 -Convolution on Color Images.es_ES.vtt 19.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/12 -Demo of the Long Distance Problem.ko_KR.vtt 19.5 KB
- 18 - Course Conclusion/subtitles/1 -How to get the Tensorflow Developer Certificate.ko_KR.vtt 19.4 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/4 -How to Code Yourself (part 1).vtt 19.4 KB
- 14 - Advanced Tensorflow Usage/subtitles/2 -Tensorflow Serving pt 2.es_ES.vtt 19.4 KB
- 6 - Convolutional Neural Networks/subtitles/11 -Improving CIFAR-10 Results.ko_KR.vtt 19.3 KB
- 18 - Course Conclusion/subtitles/2 -What to Learn Next.es_ES.vtt 19.2 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/5 -Activation Functions.ko_KR.vtt 19.1 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/9 -GRU and LSTM (pt 1).ko_KR.vtt 19.1 KB
- 3 - Machine Learning and Neurons/subtitles/2 -Code Preparation (Classification Theory).es_ES.vtt 19.1 KB
- 6 - Convolutional Neural Networks/subtitles/1 -What is Convolution (part 1).es_ES.vtt 19.0 KB
- 11 - GANs (Generative Adversarial Networks)/subtitles/1 -GAN Theory.es_ES.vtt 19.0 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/3 -Anaconda Environment Setup.es_ES.vtt 18.9 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/4 -How to Code Yourself (part 1).ko_KR.vtt 18.9 KB
- 18 - Course Conclusion/1 -How to get the Tensorflow Developer Certificate.vtt 18.9 KB
- 8 - Natural Language Processing (NLP)/subtitles/2 -Code Preparation (NLP).ko_KR.vtt 18.4 KB
- 6 - Convolutional Neural Networks/subtitles/6 -CNN Code Preparation.es_ES.vtt 18.4 KB
- 6 - Convolutional Neural Networks/4 -Convolution on Color Images.vtt 18.3 KB
- 11 - GANs (Generative Adversarial Networks)/1 -GAN Theory.vtt 18.1 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/3 -Anaconda Environment Setup.ko_KR.vtt 17.9 KB
- 14 - Advanced Tensorflow Usage/2 -Tensorflow Serving pt 2.vtt 17.8 KB
- 3 - Machine Learning and Neurons/2 -Code Preparation (Classification Theory).vtt 17.8 KB
- 6 - Convolutional Neural Networks/subtitles/1 -What is Convolution (part 1).ko_KR.vtt 17.8 KB
- 18 - Course Conclusion/2 -What to Learn Next.vtt 17.7 KB
- 6 - Convolutional Neural Networks/subtitles/4 -Convolution on Color Images.ko_KR.vtt 17.7 KB
- 11 - GANs (Generative Adversarial Networks)/subtitles/1 -GAN Theory.ko_KR.vtt 17.7 KB
- 3 - Machine Learning and Neurons/subtitles/2 -Code Preparation (Classification Theory).ko_KR.vtt 17.7 KB
- 6 - Convolutional Neural Networks/1 -What is Convolution (part 1).vtt 17.6 KB
- 8 - Natural Language Processing (NLP)/subtitles/2 -Code Preparation (NLP).es_ES.vtt 17.6 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Beginner's Coding Tips.es_ES.vtt 17.6 KB
- 18 - Course Conclusion/subtitles/2 -What to Learn Next.ko_KR.vtt 17.6 KB
- 20 - Setting up your Environment (FAQ by Student Request)/3 -Anaconda Environment Setup.vtt 17.3 KB
- 3 - Machine Learning and Neurons/subtitles/1 -What is Machine Learning.es_ES.vtt 17.3 KB
- 6 - Convolutional Neural Networks/6 -CNN Code Preparation.vtt 17.2 KB
- 6 - Convolutional Neural Networks/subtitles/6 -CNN Code Preparation.ko_KR.vtt 17.1 KB
- 14 - Advanced Tensorflow Usage/subtitles/2 -Tensorflow Serving pt 2.ko_KR.vtt 17.0 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/11 -Q-Learning.es_ES.vtt 17.0 KB
- 9 - Recommender Systems/subtitles/1 -Recommender Systems with Deep Learning Theory.es_ES.vtt 16.8 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/3 -Beginner's Coding Tips.vtt 16.6 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/3 -Beginner's Coding Tips.ko_KR.vtt 16.4 KB
- 8 - Natural Language Processing (NLP)/2 -Code Preparation (NLP).vtt 16.4 KB
- 1 - Welcome/subtitles/2 -Outline.es_ES.vtt 16.4 KB
- 3 - Machine Learning and Neurons/1 -What is Machine Learning.vtt 16.2 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/11 -Q-Learning.ko_KR.vtt 16.2 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/2 -Beginners Rejoice The Math in This Course is Optional.es_ES.vtt 16.1 KB
- 3 - Machine Learning and Neurons/subtitles/1 -What is Machine Learning.ko_KR.vtt 16.0 KB
- 17 - In-Depth Gradient Descent/subtitles/5 -Adam (pt 1).es_ES.vtt 15.8 KB
- 8 - Natural Language Processing (NLP)/subtitles/1 -Embeddings.es_ES.vtt 15.7 KB
- 12 - Deep Reinforcement Learning (Theory)/11 -Q-Learning.vtt 15.6 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/12 -Deep Q-Learning DQN (pt 1).es_ES.vtt 15.5 KB
- 4 - Feedforward Artificial Neural Networks/2 -Beginners Rejoice The Math in This Course is Optional.vtt 15.5 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/9 -Code Preparation (ANN).es_ES.vtt 15.4 KB
- 1 - Welcome/subtitles/2 -Outline.ko_KR.vtt 15.3 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).es_ES.vtt 15.2 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/2 -Beginners Rejoice The Math in This Course is Optional.ko_KR.vtt 15.2 KB
- 9 - Recommender Systems/1 -Recommender Systems with Deep Learning Theory.vtt 15.2 KB
- 9 - Recommender Systems/subtitles/1 -Recommender Systems with Deep Learning Theory.ko_KR.vtt 15.1 KB
- 1 - Welcome/2 -Outline.vtt 15.1 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/15 -Stock Return Predictions using LSTMs (pt 1).es_ES.vtt 14.8 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/9 -Solving the Bellman Equation with Reinforcement Learning (pt 2).es_ES.vtt 14.7 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/2 -Data and Environment.es_ES.vtt 14.7 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/7 -How to Represent Images.es_ES.vtt 14.7 KB
- 17 - In-Depth Gradient Descent/5 -Adam (pt 1).vtt 14.6 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to use Github & Extra Coding Tips (Optional).es_ES.vtt 14.4 KB
- 11 - GANs (Generative Adversarial Networks)/subtitles/2 -GAN Code.es_ES.vtt 14.4 KB
- 12 - Deep Reinforcement Learning (Theory)/12 -Deep Q-Learning DQN (pt 1).vtt 14.4 KB
- 17 - In-Depth Gradient Descent/subtitles/5 -Adam (pt 1).ko_KR.vtt 14.3 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/12 -Deep Q-Learning DQN (pt 1).ko_KR.vtt 14.3 KB
- 17 - In-Depth Gradient Descent/subtitles/4 -Variable and Adaptive Learning Rates.es_ES.vtt 14.3 KB
- 4 - Feedforward Artificial Neural Networks/9 -Code Preparation (ANN).vtt 14.3 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).vtt 14.2 KB
- 8 - Natural Language Processing (NLP)/1 -Embeddings.vtt 14.2 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/9 -Code Preparation (ANN).ko_KR.vtt 14.1 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/3 -Machine Learning and AI Prerequisite Roadmap (pt 1).ko_KR.vtt 14.0 KB
- 8 - Natural Language Processing (NLP)/subtitles/1 -Embeddings.ko_KR.vtt 13.9 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/2 -How to use Github & Extra Coding Tips (Optional).ko_KR.vtt 13.9 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/17 -Stock Return Predictions using LSTMs (pt 3).es_ES.vtt 13.9 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/2 -How to use Github & Extra Coding Tips (Optional).vtt 13.8 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/2 -Data and Environment.vtt 13.8 KB
- 17 - In-Depth Gradient Descent/subtitles/6 -Adam (pt 2).es_ES.vtt 13.8 KB
- 4 - Feedforward Artificial Neural Networks/7 -How to Represent Images.vtt 13.7 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/2 -Data and Environment.ko_KR.vtt 13.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/15 -Stock Return Predictions using LSTMs (pt 1).vtt 13.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/3 -Autoregressive Linear Model for Time Series Prediction.es_ES.vtt 13.6 KB
- 2 - Google Colab/subtitles/4 -Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.es_ES.vtt 13.5 KB
- 2 - Google Colab/subtitles/1 -Intro to Google Colab, how to use a GPU or TPU for free.es_ES.vtt 13.5 KB
- 12 - Deep Reinforcement Learning (Theory)/9 -Solving the Bellman Equation with Reinforcement Learning (pt 2).vtt 13.5 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/7 -How to Represent Images.ko_KR.vtt 13.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/15 -Stock Return Predictions using LSTMs (pt 1).ko_KR.vtt 13.3 KB
- 17 - In-Depth Gradient Descent/4 -Variable and Adaptive Learning Rates.vtt 13.3 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/2 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.es_ES.vtt 13.3 KB
- 10 - Transfer Learning for Computer Vision/subtitles/5 -Transfer Learning Code (pt 1) (Legacy).es_ES.vtt 13.2 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).es_ES.vtt 13.2 KB
- 3 - Machine Learning and Neurons/subtitles/7 -How does a model learn.es_ES.vtt 13.2 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/9 -Solving the Bellman Equation with Reinforcement Learning (pt 2).ko_KR.vtt 13.1 KB
- 11 - GANs (Generative Adversarial Networks)/2 -GAN Code.vtt 13.0 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/6 -Proof that using Jupyter Notebook is the same as not using it.es_ES.vtt 13.0 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/10 -GRU and LSTM (pt 2).es_ES.vtt 12.8 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/1 -How to Succeed in this Course (Long Version).vtt 12.8 KB
- 11 - GANs (Generative Adversarial Networks)/subtitles/2 -GAN Code.ko_KR.vtt 12.8 KB
- 17 - In-Depth Gradient Descent/subtitles/4 -Variable and Adaptive Learning Rates.ko_KR.vtt 12.7 KB
- 2 - Google Colab/4 -Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.vtt 12.7 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/2 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.ko_KR.vtt 12.7 KB
- 2 - Google Colab/subtitles/1 -Intro to Google Colab, how to use a GPU or TPU for free.ko_KR.vtt 12.7 KB
- 15 - Low-Level Tensorflow/subtitles/3 -Variables and Gradient Tape.es_ES.vtt 12.7 KB
- 15 - Low-Level Tensorflow/subtitles/4 -Build Your Own Custom Model.es_ES.vtt 12.7 KB
- 17 - In-Depth Gradient Descent/6 -Adam (pt 2).vtt 12.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/10 -GRU and LSTM (pt 2).vtt 12.7 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/13 -Deep Q-Learning DQN (pt 2).es_ES.vtt 12.6 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/17 -Stock Return Predictions using LSTMs (pt 3).vtt 12.6 KB
- 20 - Setting up your Environment (FAQ by Student Request)/2 -How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.6 KB
- 22 - Effective Learning Strategies for Machine Learning (FAQ by Student Request)/subtitles/1 -How to Succeed in this Course (Long Version).ko_KR.vtt 12.5 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/2 -Forecasting.es_ES.vtt 12.5 KB
- 2 - Google Colab/subtitles/4 -Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.ko_KR.vtt 12.5 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/6 -Proof that using Jupyter Notebook is the same as not using it.ko_KR.vtt 12.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/3 -Autoregressive Linear Model for Time Series Prediction.vtt 12.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/10 -GRU and LSTM (pt 2).ko_KR.vtt 12.4 KB
- 2 - Google Colab/1 -Intro to Google Colab, how to use a GPU or TPU for free.vtt 12.4 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/6 -Proof that using Jupyter Notebook is the same as not using it.vtt 12.3 KB
- 3 - Machine Learning and Neurons/7 -How does a model learn.vtt 12.3 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/3 -Autoregressive Linear Model for Time Series Prediction.ko_KR.vtt 12.3 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/8 -Solving the Bellman Equation with Reinforcement Learning (pt 1).es_ES.vtt 12.3 KB
- 3 - Machine Learning and Neurons/subtitles/7 -How does a model learn.ko_KR.vtt 12.3 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/17 -Stock Return Predictions using LSTMs (pt 3).ko_KR.vtt 12.2 KB
- 17 - In-Depth Gradient Descent/subtitles/6 -Adam (pt 2).ko_KR.vtt 12.1 KB
- 10 - Transfer Learning for Computer Vision/5 -Transfer Learning Code (pt 1) (Legacy).vtt 12.1 KB
- 10 - Transfer Learning for Computer Vision/subtitles/5 -Transfer Learning Code (pt 1) (Legacy).ko_KR.vtt 12.0 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/4 -Markov Decision Processes (MDPs).es_ES.vtt 11.9 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/11 -ANN for Regression.es_ES.vtt 11.9 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/5 -How to Code Yourself (part 2).es_ES.vtt 11.8 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/7 -Is Theano Dead.es_ES.vtt 11.8 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/6 -Value Functions and the Bellman Equation.es_ES.vtt 11.7 KB
- 15 - Low-Level Tensorflow/3 -Variables and Gradient Tape.vtt 11.7 KB
- 15 - Low-Level Tensorflow/subtitles/1 -Differences Between Tensorflow 1.x and Tensorflow 2.x.es_ES.vtt 11.7 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/13 -Deep Q-Learning DQN (pt 2).ko_KR.vtt 11.7 KB
- 15 - Low-Level Tensorflow/4 -Build Your Own Custom Model.vtt 11.6 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/2 -Forecasting.vtt 11.6 KB
- 12 - Deep Reinforcement Learning (Theory)/13 -Deep Q-Learning DQN (pt 2).vtt 11.6 KB
- 2 - Google Colab/subtitles/3 -Uploading your own data to Google Colab.es_ES.vtt 11.6 KB
- 9 - Recommender Systems/subtitles/2 -Recommender Systems with Deep Learning Code.es_ES.vtt 11.5 KB
- 3 - Machine Learning and Neurons/subtitles/6 -The Neuron.es_ES.vtt 11.5 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/6 -Code pt 2.es_ES.vtt 11.5 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/5 -How to Code Yourself (part 2).vtt 11.4 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/3 -Forward Propagation.es_ES.vtt 11.3 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/2 -Forecasting.ko_KR.vtt 11.3 KB
- 4 - Feedforward Artificial Neural Networks/11 -ANN for Regression.vtt 11.2 KB
- 12 - Deep Reinforcement Learning (Theory)/8 -Solving the Bellman Equation with Reinforcement Learning (pt 1).vtt 11.2 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/4 -The Geometrical Picture.es_ES.vtt 11.2 KB
- 12 - Deep Reinforcement Learning (Theory)/4 -Markov Decision Processes (MDPs).vtt 11.2 KB
- 15 - Low-Level Tensorflow/subtitles/4 -Build Your Own Custom Model.ko_KR.vtt 11.2 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/7 -Is Theano Dead.ko_KR.vtt 11.2 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/7 -Is Theano Dead.vtt 11.1 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/8 -Solving the Bellman Equation with Reinforcement Learning (pt 1).ko_KR.vtt 11.1 KB
- 15 - Low-Level Tensorflow/subtitles/3 -Variables and Gradient Tape.ko_KR.vtt 11.1 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/11 -ANN for Regression.ko_KR.vtt 11.1 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/10 -Help! Why is the code slower on my machine.es_ES.vtt 11.0 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -Get Your Hands Dirty, Practical Coding Experience, Data Links.es_ES.vtt 11.0 KB
- 3 - Machine Learning and Neurons/6 -The Neuron.vtt 10.9 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/5 -How to Code Yourself (part 2).ko_KR.vtt 10.9 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/4 -Markov Decision Processes (MDPs).ko_KR.vtt 10.9 KB
- 12 - Deep Reinforcement Learning (Theory)/6 -Value Functions and the Bellman Equation.vtt 10.9 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/3 -States, Actions, Rewards, Policies.es_ES.vtt 10.8 KB
- 15 - Low-Level Tensorflow/subtitles/1 -Differences Between Tensorflow 1.x and Tensorflow 2.x.ko_KR.vtt 10.8 KB
- 15 - Low-Level Tensorflow/1 -Differences Between Tensorflow 1.x and Tensorflow 2.x.vtt 10.8 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/6 -Value Functions and the Bellman Equation.ko_KR.vtt 10.7 KB
- 2 - Google Colab/subtitles/3 -Uploading your own data to Google Colab.ko_KR.vtt 10.7 KB
- 4 - Feedforward Artificial Neural Networks/3 -Forward Propagation.vtt 10.7 KB
- 14 - Advanced Tensorflow Usage/subtitles/3 -Tensorflow Lite (TFLite).es_ES.vtt 10.7 KB
- 3 - Machine Learning and Neurons/subtitles/6 -The Neuron.ko_KR.vtt 10.6 KB
- 6 - Convolutional Neural Networks/subtitles/9 -Data Augmentation.es_ES.vtt 10.5 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/1 -Get Your Hands Dirty, Practical Coding Experience, Data Links.vtt 10.5 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/7 -RNN for Time Series Prediction.es_ES.vtt 10.5 KB
- 14 - Advanced Tensorflow Usage/subtitles/4 -Why is Google the King of Distributed Computing.es_ES.vtt 10.5 KB
- 2 - Google Colab/3 -Uploading your own data to Google Colab.vtt 10.5 KB
- 16 - In-Depth Loss Functions/subtitles/1 -Mean Squared Error.es_ES.vtt 10.4 KB
- 9 - Recommender Systems/subtitles/2 -Recommender Systems with Deep Learning Code.ko_KR.vtt 10.4 KB
- 10 - Transfer Learning for Computer Vision/subtitles/6 -Transfer Learning Code (pt 2) (Legacy).es_ES.vtt 10.4 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/10 -Help! Why is the code slower on my machine.ko_KR.vtt 10.4 KB
- 10 - Transfer Learning for Computer Vision/subtitles/1 -Transfer Learning Theory.es_ES.vtt 10.3 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/3 -Forward Propagation.ko_KR.vtt 10.3 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/6 -Multiclass Classification.es_ES.vtt 10.3 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/10 -Help! Why is the code slower on my machine.vtt 10.3 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/6 -Code pt 2.vtt 10.3 KB
- 9 - Recommender Systems/2 -Recommender Systems with Deep Learning Code.vtt 10.3 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/6 -Code pt 2.ko_KR.vtt 10.3 KB
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/subtitles/1 -Get Your Hands Dirty, Practical Coding Experience, Data Links.ko_KR.vtt 10.2 KB
- 14 - Advanced Tensorflow Usage/subtitles/3 -Tensorflow Lite (TFLite).ko_KR.vtt 10.2 KB
- 4 - Feedforward Artificial Neural Networks/4 -The Geometrical Picture.vtt 10.2 KB
- 12 - Deep Reinforcement Learning (Theory)/3 -States, Actions, Rewards, Policies.vtt 10.0 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/3 -States, Actions, Rewards, Policies.ko_KR.vtt 10.0 KB
- 14 - Advanced Tensorflow Usage/4 -Why is Google the King of Distributed Computing.vtt 9.9 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/4 -The Geometrical Picture.ko_KR.vtt 9.9 KB
- 16 - In-Depth Loss Functions/1 -Mean Squared Error.vtt 9.9 KB
- 6 - Convolutional Neural Networks/9 -Data Augmentation.vtt 9.8 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/6 -Multiclass Classification.ko_KR.vtt 9.8 KB
- 6 - Convolutional Neural Networks/subtitles/9 -Data Augmentation.ko_KR.vtt 9.8 KB
- 14 - Advanced Tensorflow Usage/3 -Tensorflow Lite (TFLite).vtt 9.7 KB
- 4 - Feedforward Artificial Neural Networks/6 -Multiclass Classification.vtt 9.7 KB
- 14 - Advanced Tensorflow Usage/subtitles/4 -Why is Google the King of Distributed Computing.ko_KR.vtt 9.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/7 -RNN for Time Series Prediction.vtt 9.7 KB
- 8 - Natural Language Processing (NLP)/subtitles/5 -CNNs for Text.es_ES.vtt 9.5 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/8 -Paying Attention to Shapes.es_ES.vtt 9.4 KB
- 10 - Transfer Learning for Computer Vision/1 -Transfer Learning Theory.vtt 9.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/7 -RNN for Time Series Prediction.ko_KR.vtt 9.4 KB
- 16 - In-Depth Loss Functions/subtitles/1 -Mean Squared Error.ko_KR.vtt 9.4 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/10 -ANN for Image Classification.es_ES.vtt 9.3 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/11 -A More Challenging Sequence.es_ES.vtt 9.2 KB
- 10 - Transfer Learning for Computer Vision/6 -Transfer Learning Code (pt 2) (Legacy).vtt 9.1 KB
- 17 - In-Depth Gradient Descent/subtitles/1 -Gradient Descent.es_ES.vtt 9.1 KB
- 10 - Transfer Learning for Computer Vision/subtitles/1 -Transfer Learning Theory.ko_KR.vtt 9.1 KB
- 10 - Transfer Learning for Computer Vision/subtitles/6 -Transfer Learning Code (pt 2) (Legacy).ko_KR.vtt 9.0 KB
- 16 - In-Depth Loss Functions/subtitles/3 -Categorical Cross Entropy.es_ES.vtt 9.0 KB
- 2 - Google Colab/subtitles/2 -Tensorflow 2 in Google Colab.es_ES.vtt 8.8 KB
- 8 - Natural Language Processing (NLP)/5 -CNNs for Text.vtt 8.8 KB
- 15 - Low-Level Tensorflow/subtitles/2 -Constants and Basic Computation.es_ES.vtt 8.8 KB
- 4 - Feedforward Artificial Neural Networks/10 -ANN for Image Classification.vtt 8.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/8 -Paying Attention to Shapes.vtt 8.6 KB
- 3 - Machine Learning and Neurons/subtitles/4 -Code Preparation (Regression Theory).es_ES.vtt 8.6 KB
- 17 - In-Depth Gradient Descent/subtitles/1 -Gradient Descent.ko_KR.vtt 8.6 KB
- 17 - In-Depth Gradient Descent/1 -Gradient Descent.vtt 8.6 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/4 -Program Design and Layout.es_ES.vtt 8.5 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/7 -What does it mean to “learn”.es_ES.vtt 8.5 KB
- 16 - In-Depth Loss Functions/3 -Categorical Cross Entropy.vtt 8.4 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/8 -Code pt 4.es_ES.vtt 8.4 KB
- 10 - Transfer Learning for Computer Vision/subtitles/3 -Large Datasets and Data Generators.es_ES.vtt 8.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/11 -A More Challenging Sequence.vtt 8.4 KB
- 2 - Google Colab/subtitles/2 -Tensorflow 2 in Google Colab.ko_KR.vtt 8.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/8 -Paying Attention to Shapes.ko_KR.vtt 8.4 KB
- 8 - Natural Language Processing (NLP)/subtitles/5 -CNNs for Text.ko_KR.vtt 8.3 KB
- 2 - Google Colab/2 -Tensorflow 2 in Google Colab.vtt 8.3 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/10 -ANN for Image Classification.ko_KR.vtt 8.3 KB
- 15 - Low-Level Tensorflow/2 -Constants and Basic Computation.vtt 8.3 KB
- 14 - Advanced Tensorflow Usage/subtitles/5 -Training with Distributed Strategies.es_ES.vtt 8.2 KB
- 19 - Extras/subtitles/1 -How to Choose Hyperparameters.es_ES.vtt 8.1 KB
- 16 - In-Depth Loss Functions/subtitles/3 -Categorical Cross Entropy.ko_KR.vtt 8.1 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/11 -A More Challenging Sequence.ko_KR.vtt 8.1 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/1 -Deep Reinforcement Learning Section Introduction.es_ES.vtt 8.0 KB
- 3 - Machine Learning and Neurons/4 -Code Preparation (Regression Theory).vtt 7.9 KB
- 15 - Low-Level Tensorflow/subtitles/2 -Constants and Basic Computation.ko_KR.vtt 7.9 KB
- 10 - Transfer Learning for Computer Vision/subtitles/3 -Large Datasets and Data Generators.ko_KR.vtt 7.8 KB
- 12 - Deep Reinforcement Learning (Theory)/7 -What does it mean to “learn”.vtt 7.8 KB
- 10 - Transfer Learning for Computer Vision/3 -Large Datasets and Data Generators.vtt 7.7 KB
- 3 - Machine Learning and Neurons/subtitles/4 -Code Preparation (Regression Theory).ko_KR.vtt 7.7 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/7 -What does it mean to “learn”.ko_KR.vtt 7.7 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/4 -Program Design and Layout.ko_KR.vtt 7.7 KB
- 3 - Machine Learning and Neurons/subtitles/8 -Making Predictions.es_ES.vtt 7.7 KB
- 23 - Appendix FAQ Finale/subtitles/2 -BONUS.es_ES.vtt 7.7 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/4 -Program Design and Layout.vtt 7.6 KB
- 6 - Convolutional Neural Networks/subtitles/7 -CNN for Fashion MNIST.es_ES.vtt 7.6 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/7 -Code pt 3.es_ES.vtt 7.5 KB
- 6 - Convolutional Neural Networks/subtitles/3 -What is Convolution (part 3).es_ES.vtt 7.5 KB
- 19 - Extras/1 -How to Choose Hyperparameters.vtt 7.5 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/1 -Deep Reinforcement Learning Section Introduction.ko_KR.vtt 7.5 KB
- 14 - Advanced Tensorflow Usage/5 -Training with Distributed Strategies.vtt 7.5 KB
- 12 - Deep Reinforcement Learning (Theory)/1 -Deep Reinforcement Learning Section Introduction.vtt 7.5 KB
- 14 - Advanced Tensorflow Usage/subtitles/1 -What is a Web Service (Tensorflow Serving pt 1).es_ES.vtt 7.5 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/8 -Code pt 4.vtt 7.4 KB
- 19 - Extras/subtitles/1 -How to Choose Hyperparameters.ko_KR.vtt 7.3 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/1 -Artificial Neural Networks Section Introduction.es_ES.vtt 7.3 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/8 -Code pt 4.ko_KR.vtt 7.3 KB
- 17 - In-Depth Gradient Descent/subtitles/3 -Momentum.es_ES.vtt 7.3 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/14 -How to Learn Reinforcement Learning.es_ES.vtt 7.2 KB
- 14 - Advanced Tensorflow Usage/subtitles/5 -Training with Distributed Strategies.ko_KR.vtt 7.1 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/7 -Code pt 3.ko_KR.vtt 7.1 KB
- 6 - Convolutional Neural Networks/3 -What is Convolution (part 3).vtt 7.0 KB
- 3 - Machine Learning and Neurons/8 -Making Predictions.vtt 7.0 KB
- 6 - Convolutional Neural Networks/7 -CNN for Fashion MNIST.vtt 7.0 KB
- 14 - Advanced Tensorflow Usage/subtitles/1 -What is a Web Service (Tensorflow Serving pt 1).ko_KR.vtt 7.0 KB
- 4 - Feedforward Artificial Neural Networks/1 -Artificial Neural Networks Section Introduction.vtt 6.9 KB
- 14 - Advanced Tensorflow Usage/subtitles/6 -Using the TPU.es_ES.vtt 6.9 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/10 -Epsilon-Greedy.es_ES.vtt 6.9 KB
- 6 - Convolutional Neural Networks/subtitles/3 -What is Convolution (part 3).ko_KR.vtt 6.9 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/5 -Code pt 1.es_ES.vtt 6.9 KB
- 17 - In-Depth Gradient Descent/3 -Momentum.vtt 6.9 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/7 -Code pt 3.vtt 6.8 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/18 -Other Ways to Forecast.es_ES.vtt 6.8 KB
- 16 - In-Depth Loss Functions/subtitles/2 -Binary Cross Entropy.es_ES.vtt 6.8 KB
- 14 - Advanced Tensorflow Usage/1 -What is a Web Service (Tensorflow Serving pt 1).vtt 6.8 KB
- 10 - Transfer Learning for Computer Vision/subtitles/2 -Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).es_ES.vtt 6.8 KB
- 3 - Machine Learning and Neurons/subtitles/8 -Making Predictions.ko_KR.vtt 6.8 KB
- 12 - Deep Reinforcement Learning (Theory)/14 -How to Learn Reinforcement Learning.vtt 6.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/6 -RNN Code Preparation.es_ES.vtt 6.7 KB
- 17 - In-Depth Gradient Descent/subtitles/3 -Momentum.ko_KR.vtt 6.7 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/1 -Artificial Neural Networks Section Introduction.ko_KR.vtt 6.7 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/3 -Replay Buffer.es_ES.vtt 6.7 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/14 -How to Learn Reinforcement Learning.ko_KR.vtt 6.7 KB
- 12 - Deep Reinforcement Learning (Theory)/10 -Epsilon-Greedy.vtt 6.6 KB
- 6 - Convolutional Neural Networks/subtitles/7 -CNN for Fashion MNIST.ko_KR.vtt 6.6 KB
- 6 - Convolutional Neural Networks/subtitles/2 -What is Convolution (part 2).es_ES.vtt 6.6 KB
- 10 - Transfer Learning for Computer Vision/2 -Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).vtt 6.4 KB
- 10 - Transfer Learning for Computer Vision/subtitles/2 -Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).ko_KR.vtt 6.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/6 -RNN Code Preparation.ko_KR.vtt 6.4 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/10 -Epsilon-Greedy.ko_KR.vtt 6.4 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/1 -Reinforcement Learning Stock Trader Introduction.es_ES.vtt 6.4 KB
- 16 - In-Depth Loss Functions/2 -Binary Cross Entropy.vtt 6.4 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/5 -Code pt 1.ko_KR.vtt 6.4 KB
- 6 - Convolutional Neural Networks/2 -What is Convolution (part 2).vtt 6.4 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/18 -Other Ways to Forecast.vtt 6.3 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/5 -Code pt 1.vtt 6.3 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/6 -RNN Code Preparation.vtt 6.3 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/18 -Other Ways to Forecast.ko_KR.vtt 6.2 KB
- 6 - Convolutional Neural Networks/subtitles/10 -Batch Normalization.es_ES.vtt 6.2 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/16 -Stock Return Predictions using LSTMs (pt 2).es_ES.vtt 6.2 KB
- 16 - In-Depth Loss Functions/subtitles/2 -Binary Cross Entropy.ko_KR.vtt 6.2 KB
- 2 - Google Colab/subtitles/7 -Course Updates.ko_KR.vtt 6.2 KB
- 14 - Advanced Tensorflow Usage/6 -Using the TPU.vtt 6.1 KB
- 14 - Advanced Tensorflow Usage/subtitles/6 -Using the TPU.ko_KR.vtt 6.1 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/3 -Replay Buffer.vtt 6.1 KB
- 6 - Convolutional Neural Networks/subtitles/2 -What is Convolution (part 2).ko_KR.vtt 6.1 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/1 -Reinforcement Learning Stock Trader Introduction.vtt 6.0 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/3 -Replay Buffer.ko_KR.vtt 5.9 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/5 -The Return.es_ES.vtt 5.9 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.es_ES.vtt 5.8 KB
- 6 - Convolutional Neural Networks/10 -Batch Normalization.vtt 5.8 KB
- 20 - Setting up your Environment (FAQ by Student Request)/1 -Pre-Installation Check.vtt 5.7 KB
- 2 - Google Colab/subtitles/7 -Course Updates.es_ES.vtt 5.7 KB
- 10 - Transfer Learning for Computer Vision/subtitles/4 -2 Approaches to Transfer Learning.es_ES.vtt 5.7 KB
- 6 - Convolutional Neural Networks/subtitles/10 -Batch Normalization.ko_KR.vtt 5.7 KB
- 1 - Welcome/subtitles/3 -Where to get the code, notebooks, and data.es_ES.vtt 5.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/13 -RNN for Image Classification (Theory).es_ES.vtt 5.7 KB
- 20 - Setting up your Environment (FAQ by Student Request)/subtitles/1 -Pre-Installation Check.ko_KR.vtt 5.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/16 -Stock Return Predictions using LSTMs (pt 2).vtt 5.7 KB
- 12 - Deep Reinforcement Learning (Theory)/subtitles/5 -The Return.ko_KR.vtt 5.6 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/1 -Reinforcement Learning Stock Trader Introduction.ko_KR.vtt 5.6 KB
- 1 - Welcome/3 -Where to get the code, notebooks, and data.vtt 5.5 KB
- 5 - Interlude tf.data/subtitles/1 -Why use tf.data.es_ES.vtt 5.5 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/16 -Stock Return Predictions using LSTMs (pt 2).ko_KR.vtt 5.5 KB
- 12 - Deep Reinforcement Learning (Theory)/5 -The Return.vtt 5.5 KB
- 10 - Transfer Learning for Computer Vision/subtitles/4 -2 Approaches to Transfer Learning.ko_KR.vtt 5.5 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/13 -RNN for Image Classification (Theory).ko_KR.vtt 5.5 KB
- 1 - Welcome/subtitles/3 -Where to get the code, notebooks, and data.ko_KR.vtt 5.4 KB
- 3 - Machine Learning and Neurons/subtitles/10 -Why Keras.es_ES.vtt 5.4 KB
- 5 - Interlude tf.data/subtitles/1 -Why use tf.data.ko_KR.vtt 5.4 KB
- 1 - Welcome/subtitles/1 -Introduction.es_ES.vtt 5.4 KB
- 6 - Convolutional Neural Networks/subtitles/8 -CNN for CIFAR-10.es_ES.vtt 5.3 KB
- 10 - Transfer Learning for Computer Vision/4 -2 Approaches to Transfer Learning.vtt 5.2 KB
- 2 - Google Colab/7 -Course Updates.vtt 5.2 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/13 -RNN for Image Classification (Theory).vtt 5.2 KB
- 17 - In-Depth Gradient Descent/subtitles/2 -Stochastic Gradient Descent.es_ES.vtt 5.2 KB
- 3 - Machine Learning and Neurons/subtitles/10 -Why Keras.ko_KR.vtt 5.1 KB
- 3 - Machine Learning and Neurons/10 -Why Keras.vtt 5.1 KB
- 1 - Welcome/1 -Introduction.vtt 5.0 KB
- 19 - Extras/subtitles/2 -Get the Exercise Pack for This Course.es_ES.vtt 5.0 KB
- 1 - Welcome/subtitles/1 -Introduction.ko_KR.vtt 4.9 KB
- 3 - Machine Learning and Neurons/subtitles/9 -Saving and Loading a Model.es_ES.vtt 4.8 KB
- 6 - Convolutional Neural Networks/subtitles/8 -CNN for CIFAR-10.ko_KR.vtt 4.8 KB
- 19 - Extras/2 -Get the Exercise Pack for This Course.vtt 4.8 KB
- 17 - In-Depth Gradient Descent/2 -Stochastic Gradient Descent.vtt 4.8 KB
- 6 - Convolutional Neural Networks/8 -CNN for CIFAR-10.vtt 4.7 KB
- 17 - In-Depth Gradient Descent/subtitles/2 -Stochastic Gradient Descent.ko_KR.vtt 4.7 KB
- 19 - Extras/subtitles/2 -Get the Exercise Pack for This Course.ko_KR.vtt 4.5 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/4 -Proof that the Linear Model Works.es_ES.vtt 4.3 KB
- 3 - Machine Learning and Neurons/subtitles/11 -Suggestion Box.es_ES.vtt 4.3 KB
- 3 - Machine Learning and Neurons/9 -Saving and Loading a Model.vtt 4.3 KB
- 3 - Machine Learning and Neurons/subtitles/9 -Saving and Loading a Model.ko_KR.vtt 4.3 KB
- 2 - Google Colab/subtitles/5 -How to Succeed in This Course.es_ES.vtt 4.2 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/9 -Reinforcement Learning Stock Trader Discussion.es_ES.vtt 4.2 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/14 -RNN for Image Classification (Code).es_ES.vtt 4.2 KB
- 3 - Machine Learning and Neurons/11 -Suggestion Box.vtt 4.1 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/4 -Proof that the Linear Model Works.vtt 4.0 KB
- 3 - Machine Learning and Neurons/subtitles/11 -Suggestion Box.ko_KR.vtt 4.0 KB
- 2 - Google Colab/5 -How to Succeed in This Course.vtt 3.9 KB
- 2 - Google Colab/subtitles/5 -How to Succeed in This Course.ko_KR.vtt 3.9 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/9 -Reinforcement Learning Stock Trader Discussion.vtt 3.9 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/4 -Proof that the Linear Model Works.ko_KR.vtt 3.8 KB
- 13 - Stock Trading Project with Deep Reinforcement Learning/subtitles/9 -Reinforcement Learning Stock Trader Discussion.ko_KR.vtt 3.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/subtitles/14 -RNN for Image Classification (Code).ko_KR.vtt 3.7 KB
- 7 - Recurrent Neural Networks, Time Series, and Sequence Data/14 -RNN for Image Classification (Code).vtt 3.7 KB
- 2 - Google Colab/subtitles/6 -Temporary 403 Errors.es_ES.vtt 3.4 KB
- 23 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.ko_KR.vtt 3.3 KB
- 23 - Appendix FAQ Finale/1 -What is the Appendix.vtt 3.3 KB
- 23 - Appendix FAQ Finale/subtitles/1 -What is the Appendix.es_ES.vtt 3.3 KB
- 2 - Google Colab/6 -Temporary 403 Errors.vtt 3.2 KB
- 2 - Google Colab/subtitles/6 -Temporary 403 Errors.ko_KR.vtt 3.2 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/8 -Color Mixing Clarification.es_ES.vtt 1.1 KB
- 4 - Feedforward Artificial Neural Networks/subtitles/8 -Color Mixing Clarification.ko_KR.vtt 1.0 KB
- 4 - Feedforward Artificial Neural Networks/8 -Color Mixing Clarification.vtt 1.0 KB
- 1 - Welcome/3 -Data Links.url 119 bytes
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/1 -Data Links.url 107 bytes
- 1 - Welcome/3 -Github Link.url 100 bytes
- 21 - Extra Help With Python Coding for Beginners (FAQ by Student Request)/1 -Github Links.url 100 bytes
- 1 - Welcome/3 -Code Link.url 87 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.