Udemy - Time Series Analysis, Forecasting, and Machine Learning (12.2023)
File List
- 10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.mp4 197.7 MB
- 5. ARIMA/5. ARIMA in Code.mp4 121.6 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4 108.2 MB
- 5. ARIMA/15. Auto ARIMA in Code (Stocks).mp4 105.2 MB
- 5. ARIMA/14. Auto ARIMA in Code.mp4 103.2 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.mp4 96.8 MB
- 12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).mp4 91.1 MB
- 13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.mp4 91.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.mp4 86.5 MB
- 7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).mp4 86.2 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).mp4 80.0 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4 79.6 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.mp4 78.3 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.mp4 75.6 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.mp4 70.9 MB
- 4. Exponential Smoothing and ETS Methods/8. SES Code.mp4 69.5 MB
- 15. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.mp4 69.5 MB
- 7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.mp4 69.0 MB
- 3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.mp4 68.1 MB
- 13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.mp4 67.9 MB
- 13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.mp4 67.8 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.mp4 67.7 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.mp4 67.5 MB
- 5. ARIMA/17. Auto ARIMA in Code (Sales Data).mp4 65.4 MB
- 7. Machine Learning Methods/8. Extrapolation and Stock Prices.mp4 64.7 MB
- 13. VIP Facebook Prophet/3. Prophet Code Preparation.mp4 63.9 MB
- 2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).mp4 63.9 MB
- 12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).mp4 63.3 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).mp4 61.6 MB
- 5. ARIMA/7. Stationarity in Code.mp4 61.5 MB
- 4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.mp4 60.2 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.mp4 59.2 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.mp4 57.5 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).mp4 55.5 MB
- 13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.mp4 55.2 MB
- 5. ARIMA/6. Stationarity.mp4 55.2 MB
- 13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.mp4 54.7 MB
- 12. VIP AWS Forecast/6. Code pt 3 (Building your Model).mp4 54.5 MB
- 4. Exponential Smoothing and ETS Methods/4. SMA Code.mp4 54.1 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.mp4 54.0 MB
- 5. ARIMA/2. Autoregressive Models - AR(p).mp4 52.6 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).mp4 52.3 MB
- 11. VIP GARCH/9. GARCH Code (pt 2).mp4 51.9 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).mp4 50.8 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).mp4 50.2 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.mp4 50.1 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.mp4 50.0 MB
- 12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).mp4 49.9 MB
- 4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).mp4 49.8 MB
- 7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).mp4 49.4 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).mp4 49.3 MB
- 15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).mp4 49.2 MB
- 12. VIP AWS Forecast/2. Data Model.mp4 49.0 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.mp4 48.8 MB
- 4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).mp4 47.6 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.mp4 46.4 MB
- 11. VIP GARCH/13. A Deep Learning Approach to GARCH.mp4 46.1 MB
- 5. ARIMA/13. Model Selection, AIC and BIC.mp4 45.9 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).mp4 45.4 MB
- 3. Time Series Basics/9. Financial Time Series Primer.mp4 44.9 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.mp4 44.8 MB
- 4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.mp4 44.3 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.mp4 44.1 MB
- 11. VIP GARCH/10. GARCH Code (pt 3).mp4 44.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.mp4 43.9 MB
- 3. Time Series Basics/8. Forecasting Metrics.mp4 43.7 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.mp4 43.6 MB
- 14. Setting Up Your Environment FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.6 MB
- 2. Getting Set Up/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.mp4 43.6 MB
- 12. VIP AWS Forecast/1. AWS Forecast Section Introduction.mp4 43.5 MB
- 7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.mp4 43.5 MB
- 5. ARIMA/16. ACF and PACF for Stock Returns.mp4 43.5 MB
- 7. Machine Learning Methods/12. Application Sales Data.mp4 42.2 MB
- 13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.mp4 41.9 MB
- 3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.mp4 41.5 MB
- 5. ARIMA/4. ARIMA.mp4 41.4 MB
- 5. ARIMA/10. ACF and PACF in Code (pt 1).mp4 41.3 MB
- 11. VIP GARCH/11. GARCH Code (pt 4).mp4 41.3 MB
- 13. VIP Facebook Prophet/2. How does Prophet work.mp4 40.7 MB
- 4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.mp4 40.5 MB
- 17. Appendix FAQ Finale/2. BONUS.mp4 40.5 MB
- 4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.mp4 40.2 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN Elman Unit (pt 2).mp4 40.0 MB
- 11. VIP GARCH/7. GARCH Code Preparation (pt 2).mp4 40.0 MB
- 5. ARIMA/12. Auto ARIMA and SARIMAX.mp4 39.4 MB
- 4. Exponential Smoothing and ETS Methods/6. EWMA Code.mp4 39.4 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 39.0 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN Elman Unit (pt 1).mp4 38.7 MB
- 13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.mp4 38.0 MB
- 5. ARIMA/18. How to Forecast with ARIMA.mp4 37.9 MB
- 11. VIP GARCH/6. GARCH Code Preparation (pt 1).mp4 37.9 MB
- 7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.mp4 37.4 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).mp4 37.2 MB
- 5. ARIMA/8. ACF (Autocorrelation Function).mp4 37.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.mp4 36.1 MB
- 4. Exponential Smoothing and ETS Methods/5. EWMA Theory.mp4 35.8 MB
- 4. Exponential Smoothing and ETS Methods/7. SES Theory.mp4 35.6 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.mp4 34.1 MB
- 5. ARIMA/11. ACF and PACF in Code (pt 2).mp4 33.9 MB
- 3. Time Series Basics/4. Why Do We Care About Shapes.mp4 33.7 MB
- 3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.mp4 33.3 MB
- 11. VIP GARCH/8. GARCH Code (pt 1).mp4 33.3 MB
- 4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).mp4 33.2 MB
- 3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.mp4 32.6 MB
- 1. Welcome/1. Introduction and Outline.mp4 32.6 MB
- 7. Machine Learning Methods/3. Autoregressive Machine Learning Models.mp4 32.4 MB
- 7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.mp4 32.0 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.mp4 32.0 MB
- 11. VIP GARCH/12. GARCH Code (pt 5).mp4 31.9 MB
- 7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.mp4 31.7 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.mp4 31.3 MB
- 3. Time Series Basics/2. What is a Time Series.mp4 31.2 MB
- 11. VIP GARCH/14. GARCH Section Summary.mp4 30.8 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.mp4 30.7 MB
- 3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.mp4 30.1 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).mp4 29.8 MB
- 4. Exponential Smoothing and ETS Methods/15. Application Sales Data.mp4 29.4 MB
- 14. Setting Up Your Environment FAQ/2. Anaconda Environment Setup.mp4 27.9 MB
- 11. VIP GARCH/5. GARCH Theory.mp4 27.5 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.mp4 27.5 MB
- 3. Time Series Basics/15. Suggestion Box.mp4 27.2 MB
- 11. VIP GARCH/3. ARCH Theory (pt 2).mp4 27.2 MB
- 2. Getting Set Up/3. Where to get the code, notebooks, and data.mp4 26.9 MB
- 7. Machine Learning Methods/14. Application Predicting Stock Movements.mp4 26.3 MB
- 12. VIP AWS Forecast/9. AWS Forecast Section Summary.mp4 25.5 MB
- 5. ARIMA/9. PACF (Partial Autocorrelation Funtion).mp4 25.1 MB
- 1. Welcome/2. Warmup (Optional).mp4 24.7 MB
- 15. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).mp4 24.6 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).mp4 24.1 MB
- 4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.mp4 23.9 MB
- 12. VIP AWS Forecast/3. Creating an IAM Role.mp4 23.8 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.mp4 23.6 MB
- 3. Time Series Basics/5. Types of Tasks.mp4 23.6 MB
- 5. ARIMA/1. ARIMA Section Introduction.mp4 23.0 MB
- 14. Setting Up Your Environment FAQ/1. Pre-Installation Check.mp4 22.7 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.mp4 22.4 MB
- 2. Getting Set Up/5. Temporary 403 Errors.mp4 22.0 MB
- 7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.mp4 21.8 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.mp4 20.9 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.mp4 20.5 MB
- 11. VIP GARCH/4. ARCH Theory (pt 3).mp4 19.5 MB
- 11. VIP GARCH/2. ARCH Theory (pt 1).mp4 19.5 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.mp4 19.4 MB
- 4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.mp4 19.4 MB
- 4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.mp4 19.1 MB
- 4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).mp4 19.1 MB
- 7. Machine Learning Methods/10. Forecasting with Differencing.mp4 19.0 MB
- 3. Time Series Basics/1. Time Series Basics Section Introduction.mp4 18.9 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.mp4 18.7 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.mp4 18.6 MB
- 3. Time Series Basics/10. Price Simulations in Code.mp4 18.3 MB
- 11. VIP GARCH/1. GARCH Section Introduction.mp4 18.2 MB
- 7. Machine Learning Methods/1. Machine Learning Section Introduction.mp4 17.5 MB
- 17. Appendix FAQ Finale/1. What is the Appendix.mp4 16.4 MB
- 2. Getting Set Up/4. How to Succeed in This Course.mp4 16.2 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.mp4 15.9 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.mp4 15.5 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.mp4 15.4 MB
- 4. Exponential Smoothing and ETS Methods/3. SMA Theory.mp4 15.2 MB
- 13. VIP Facebook Prophet/1. Prophet Section Introduction.mp4 14.5 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.mp4 14.3 MB
- 3. Time Series Basics/3. Modeling vs. Predicting.mp4 14.1 MB
- 12. VIP AWS Forecast/8. AWS Forecast Exercise.mp4 13.8 MB
- 4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.mp4 13.6 MB
- 13. VIP Facebook Prophet/11. Prophet Section Summary.mp4 13.5 MB
- 5. ARIMA/20. ARIMA Section Summary.mp4 12.7 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4 12.6 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.mp4 12.3 MB
- 3. Time Series Basics/14. Time Series Basics Section Summary.mp4 12.1 MB
- 4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.mp4 11.6 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.mp4 10.9 MB
- 5. ARIMA/3. Moving Average Models - MA(q).mp4 10.9 MB
- 7. Machine Learning Methods/15. Machine Learning Section Summary.mp4 10.4 MB
- 5. ARIMA/19. Forecasting Out-Of-Sample.mp4 6.7 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.srt 34.4 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.srt 32.0 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt 31.9 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt 23.5 KB
- 5. ARIMA/5. ARIMA in Code.srt 22.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.srt 22.9 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).srt 22.8 KB
- 15. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).srt 22.6 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.srt 21.0 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.srt 20.7 KB
- 14. Setting Up Your Environment FAQ/2. Anaconda Environment Setup.srt 20.3 KB
- 3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.srt 19.4 KB
- 7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.srt 18.9 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.srt 17.7 KB
- 5. ARIMA/6. Stationarity.srt 17.5 KB
- 5. ARIMA/15. Auto ARIMA in Code (Stocks).srt 17.1 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt 16.8 KB
- 5. ARIMA/2. Autoregressive Models - AR(p).srt 16.7 KB
- 12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).srt 16.4 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.srt 16.3 KB
- 13. VIP Facebook Prophet/3. Prophet Code Preparation.srt 16.2 KB
- 5. ARIMA/14. Auto ARIMA in Code.srt 15.7 KB
- 2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).srt 15.7 KB
- 3. Time Series Basics/8. Forecasting Metrics.srt 15.2 KB
- 11. VIP GARCH/13. A Deep Learning Approach to GARCH.srt 15.0 KB
- 3. Time Series Basics/9. Financial Time Series Primer.srt 15.0 KB
- 4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).srt 15.0 KB
- 7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).srt 15.0 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).srt 14.8 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).srt 14.7 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt 14.6 KB
- 4. Exponential Smoothing and ETS Methods/5. EWMA Theory.srt 14.6 KB
- 4. Exponential Smoothing and ETS Methods/8. SES Code.srt 14.5 KB
- 4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.srt 14.3 KB
- 14. Setting Up Your Environment FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt 14.2 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.srt 14.2 KB
- 15. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.srt 14.0 KB
- 13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.srt 14.0 KB
- 4. Exponential Smoothing and ETS Methods/7. SES Theory.srt 13.9 KB
- 5. ARIMA/4. ARIMA.srt 13.8 KB
- 5. ARIMA/13. Model Selection, AIC and BIC.srt 13.5 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.srt 13.4 KB
- 15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).srt 13.2 KB
- 7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.srt 13.1 KB
- 5. ARIMA/8. ACF (Autocorrelation Function).srt 13.0 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN Elman Unit (pt 2).srt 12.9 KB
- 12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).srt 12.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.srt 12.7 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.srt 12.5 KB
- 4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.srt 12.3 KB
- 5. ARIMA/12. Auto ARIMA and SARIMAX.srt 12.3 KB
- 12. VIP AWS Forecast/2. Data Model.srt 12.2 KB
- 5. ARIMA/18. How to Forecast with ARIMA.srt 12.1 KB
- 2. Getting Set Up/1. Get Your Hands Dirty, Practical Coding Experience, Data Links.srt 12.0 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.srt 11.7 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN Elman Unit (pt 1).srt 11.5 KB
- 13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.srt 11.3 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.srt 11.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.srt 11.1 KB
- 13. VIP Facebook Prophet/2. How does Prophet work.srt 10.8 KB
- 5. ARIMA/7. Stationarity in Code.srt 10.8 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.srt 10.7 KB
- 12. VIP AWS Forecast/1. AWS Forecast Section Introduction.srt 10.6 KB
- 11. VIP GARCH/6. GARCH Code Preparation (pt 1).srt 10.5 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).srt 10.5 KB
- 11. VIP GARCH/7. GARCH Code Preparation (pt 2).srt 10.4 KB
- 5. ARIMA/17. Auto ARIMA in Code (Sales Data).srt 10.2 KB
- 7. Machine Learning Methods/3. Autoregressive Machine Learning Models.srt 10.1 KB
- 4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).srt 10.1 KB
- 4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.srt 10.0 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).srt 10.0 KB
- 7. Machine Learning Methods/8. Extrapolation and Stock Prices.srt 9.8 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).srt 9.7 KB
- 4. Exponential Smoothing and ETS Methods/4. SMA Code.srt 9.6 KB
- 13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.srt 9.6 KB
- 13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.srt 9.6 KB
- 11. VIP GARCH/5. GARCH Theory.srt 9.6 KB
- 11. VIP GARCH/3. ARCH Theory (pt 2).srt 9.6 KB
- 4. Exponential Smoothing and ETS Methods/6. EWMA Code.srt 9.6 KB
- 4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).srt 9.6 KB
- 5. ARIMA/10. ACF and PACF in Code (pt 1).srt 9.3 KB
- 13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.srt 9.3 KB
- 12. VIP AWS Forecast/6. Code pt 3 (Building your Model).srt 9.2 KB
- 3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.srt 9.2 KB
- 7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.srt 9.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.srt 9.0 KB
- 7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.srt 9.0 KB
- 3. Time Series Basics/5. Types of Tasks.srt 8.9 KB
- 11. VIP GARCH/14. GARCH Section Summary.srt 8.7 KB
- 11. VIP GARCH/9. GARCH Code (pt 2).srt 8.7 KB
- 12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).srt 8.6 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.srt 8.6 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).srt 8.5 KB
- 3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.srt 8.3 KB
- 3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.srt 8.1 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).srt 8.1 KB
- 3. Time Series Basics/4. Why Do We Care About Shapes.srt 8.1 KB
- 5. ARIMA/11. ACF and PACF in Code (pt 2).srt 8.0 KB
- 5. ARIMA/9. PACF (Partial Autocorrelation Funtion).srt 8.0 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.srt 7.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.srt 7.9 KB
- 1. Welcome/1. Introduction and Outline.srt 7.6 KB
- 5. ARIMA/16. ACF and PACF for Stock Returns.srt 7.5 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).srt 7.4 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.srt 7.3 KB
- 4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.srt 7.2 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).srt 7.2 KB
- 5. ARIMA/1. ARIMA Section Introduction.srt 7.1 KB
- 11. VIP GARCH/10. GARCH Code (pt 3).srt 7.1 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).srt 7.1 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.srt 6.9 KB
- 3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.srt 6.8 KB
- 12. VIP AWS Forecast/9. AWS Forecast Section Summary.srt 6.8 KB
- 7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).srt 6.7 KB
- 11. VIP GARCH/4. ARCH Theory (pt 3).srt 6.6 KB
- 14. Setting Up Your Environment FAQ/1. Pre-Installation Check.srt 6.6 KB
- 7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.srt 6.4 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.srt 6.4 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.srt 6.4 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.srt 6.4 KB
- 11. VIP GARCH/2. ARCH Theory (pt 1).srt 6.3 KB
- 2. Getting Set Up/3. Where to get the code, notebooks, and data.srt 6.3 KB
- 4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.srt 6.3 KB
- 3. Time Series Basics/1. Time Series Basics Section Introduction.srt 6.3 KB
- 1. Welcome/2. Warmup (Optional).srt 6.1 KB
- 3. Time Series Basics/2. What is a Time Series.srt 6.1 KB
- 11. VIP GARCH/8. GARCH Code (pt 1).srt 6.1 KB
- 13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.srt 6.1 KB
- 11. VIP GARCH/11. GARCH Code (pt 4).srt 5.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.srt 5.5 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.srt 5.4 KB
- 4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.srt 5.4 KB
- 7. Machine Learning Methods/1. Machine Learning Section Introduction.srt 5.3 KB
- 7. Machine Learning Methods/12. Application Sales Data.srt 5.3 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.srt 5.3 KB
- 7. Machine Learning Methods/10. Forecasting with Differencing.srt 5.3 KB
- 4. Exponential Smoothing and ETS Methods/15. Application Sales Data.srt 5.2 KB
- 11. VIP GARCH/1. GARCH Section Introduction.srt 5.2 KB
- 4. Exponential Smoothing and ETS Methods/3. SMA Theory.srt 4.8 KB
- 7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.srt 4.8 KB
- 12. VIP AWS Forecast/3. Creating an IAM Role.srt 4.8 KB
- 3. Time Series Basics/15. Suggestion Box.srt 4.7 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.srt 4.7 KB
- 5. ARIMA/20. ARIMA Section Summary.srt 4.6 KB
- 13. VIP Facebook Prophet/11. Prophet Section Summary.srt 4.5 KB
- 7. Machine Learning Methods/14. Application Predicting Stock Movements.srt 4.5 KB
- 2. Getting Set Up/4. How to Succeed in This Course.srt 4.4 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.srt 4.4 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.srt 4.4 KB
- 3. Time Series Basics/14. Time Series Basics Section Summary.srt 4.3 KB
- 5. ARIMA/3. Moving Average Models - MA(q).srt 4.2 KB
- 13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.srt 4.2 KB
- 4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.srt 4.2 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.srt 4.2 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.srt 4.2 KB
- 13. VIP Facebook Prophet/1. Prophet Section Introduction.srt 4.1 KB
- 11. VIP GARCH/12. GARCH Code (pt 5).srt 4.1 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.srt 4.0 KB
- 4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.srt 3.9 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.srt 3.8 KB
- 17. Appendix FAQ Finale/1. What is the Appendix.srt 3.8 KB
- 2. Getting Set Up/5. Temporary 403 Errors.srt 3.7 KB
- 12. VIP AWS Forecast/8. AWS Forecast Exercise.srt 3.6 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.srt 3.5 KB
- 4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).srt 3.4 KB
- 3. Time Series Basics/10. Price Simulations in Code.srt 3.4 KB
- 3. Time Series Basics/3. Modeling vs. Predicting.srt 3.4 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.srt 3.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.srt 3.0 KB
- 7. Machine Learning Methods/15. Machine Learning Section Summary.srt 3.0 KB
- 4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.srt 2.8 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.srt 2.8 KB
- 5. ARIMA/19. Forecasting Out-Of-Sample.srt 1.7 KB
- 2. Getting Set Up/1.1 Data Links.html 157 bytes
- 2. Getting Set Up/3.2 Data Links.html 157 bytes
- 2. Getting Set Up/1.2 Github Links.html 143 bytes
- 2. Getting Set Up/3.3 Github Link.html 143 bytes
- 2. Getting Set Up/3.1 Code Link.html 125 bytes
- 9. Deep Learning Convolutional Neural Networks (CNN)/11.1 Convert a Time Series Into an Image with Gramian Angular Fields and Markov Transition Fields.html 123 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.