Udemy - LangChain- Develop AI Agents with LangChain & LangGraph (7.2025)
File List
- 03. Ice Breaker Real World Generative AI Agent application/2. Integrating Linkedin Data Processing - Part 1.mp4 278.7 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Building an AI LangChain Chat Assistant- Frontend with Streamlit (UI).mp4 194.4 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. Optional RAG Pipeline Optimization featuring FireCrawl.mp4 190.7 MB
- 17. LangChain Glossary/5. LangChain Token Limitation Handeling Strategies.mp4 168.8 MB
- 12. Reflection Agent/4. Defining our LangGraph Graph.mp4 164.7 MB
- 10. Let's Talk About LLM Applications In Production/5. Finished course Whats next!.mp4 161.3 MB
- 13. Reflexion Agent/1. What are we building.mp4 158.6 MB
- 13. Reflexion Agent/4. Actor Agent.mp4 155.8 MB
- 14. Agentic RAG/13. Self RAG- Implementation.mp4 145.1 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/5. ReAct prompt, LLM Reasoning Engine, Output Parsing and Tool Execution.mp4 140.5 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/3. Project Setup (vscode) - optional.mp4 140.2 MB
- 14. Agentic RAG/14. Adaptive RAG.mp4 138.9 MB
- 14. Agentic RAG/8. Building a Relevance Filter for RAG using LangChain's Structured Output.mp4 132.4 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/5. Retrieval + Augmentation + Generation = RAG.mp4 127.3 MB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. Medium Analyzer- Class Review TextLoader,TextSplitter,OpenAIEmbeddings,Pinecone.mp4 125.0 MB
- 03. Ice Breaker Real World Generative AI Agent application/9. Output Parsers- Getting Ready to work with a Frontend.mp4 123.0 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Environment Setup.mp4 122.7 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/4. Pinecone Vectorstore Ingestion.mp4 121.5 MB
- 03. Ice Breaker Real World Generative AI Agent application/5. Linkedin Data Processing- Part 4 Custom Search Agent Implementation.mp4 119.9 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/7. Building an AI LangChain Chat Assistant- Memory.mp4 118.2 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/11. Adding Sidebar and LangChain's color theme with Cursor Composer.mp4 111.1 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/5. Your First LangChain application - Chaining a simple prompt.mp4 106.8 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. Project Setup (Pycharm) recommend).mp4 104.9 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/5. mcpdoc.mp4 103.8 MB
- 03. Ice Breaker Real World Generative AI Agent application/11. Tracing application with LangSmith.mp4 101.6 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/6. Using Open Source Models With LangChain (Ollama, Llama3, Mistral).mp4 100.1 MB
- 10. Let's Talk About LLM Applications In Production/4. Generative UIUX featuring CopilotKit.mp4 98.8 MB
- 10. Let's Talk About LLM Applications In Production/3. LLMs in Production Privacy & Data Retention.mp4 96.5 MB
- 10. Let's Talk About LLM Applications In Production/7. Open Source LLMs VS Managed LLM Providers (Deepseek).mp4 96.2 MB
- 03. Ice Breaker Real World Generative AI Agent application/8. Optional Twitter Data Processing- Part 2- Agents.mp4 93.9 MB
- 08. Prompt Engineering Theory/5. Chain of Thought Prompting.mp4 91.9 MB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. Medium Analyzer- Boilerplate Project Setup.mp4 91.4 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/7. CallbackHandlers, ReAct Prompt and finalizing the ReAct Agent loop.mp4 90.5 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/1. What are we building (A slim Version of GPT Code-Interpreter).mp4 90.4 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/6. Function Tool Calling in LangChain.mp4 90.2 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. CSV Agent.mp4 89.8 MB
- 08. Prompt Engineering Theory/7. Prompt Engineering Quick Tips.mp4 89.5 MB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/4. Medium Analyzer- Retrieval Implementation Implementation with chains.mp4 87.6 MB
- 08. Prompt Engineering Theory/6. ReAct Prompting.mp4 87.4 MB
- 11. -------------------Introduction To LangGraph -------------------/11. Hands On Running Our LangGraph React Agent with Function Calling.mp4 86.0 MB
- 03. Ice Breaker Real World Generative AI Agent application/7. Optional Twitter Data Processing- Part 1- Scraping.mp4 83.1 MB
- 17. LangChain Glossary/1. ChatModels.mp4 82.2 MB
- 14. Agentic RAG/10. Creating the LLM Generation Chain and Node for LangGraph.mp4 81.4 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/3. Defining Tools for our ReAct agent.mp4 81.4 MB
- 13. Reflexion Agent/6. ToolNode - Executing Tools.mp4 78.0 MB
- 03. Ice Breaker Real World Generative AI Agent application/10. FullsStack App- Building our LLM powered by LangChain FullStack Application.mp4 77.8 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/7. Function Calling Vs ReAct.mp4 77.7 MB
- 14. Agentic RAG/5. LangChain Vector Store Ingestion Pipeline (WebLoader, ChromaDB).mp4 77.2 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Documentation Helper In Production.mp4 75.0 MB
- 09. Troubleshooting Section/4. LangChain Version In Course (V0.3.3).mp4 74.4 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/1. What are we building (RAG).mp4 73.4 MB
- 13. Reflexion Agent/7. Building our LangGraph Graph.mp4 72.2 MB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. Chat With Your PDF- FAISS Local Vectorstore.mp4 68.4 MB
- 18. Bonus/1. Bonus.mp4 67.6 MB
- 08. Prompt Engineering Theory/4. Few Shot Prompting.mp4 66.3 MB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/3. Medium Analyzer- Ingestion Implementation.mp4 65.8 MB
- 11. -------------------Introduction To LangGraph -------------------/8. Hands On Coding the Agent's Brain Implementing the ReAct Runnable.mp4 61.5 MB
- 10. Let's Talk About LLM Applications In Production/1. LLM Applications in Production.mp4 60.6 MB
- 11. -------------------Introduction To LangGraph -------------------/2. Why LangGraph LangGraph VS LangChain.mp4 57.7 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/1. What is LangChain LangChain Under 6 Minutes.mp4 54.7 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/6. AgentAction, AgentFinish, ReAct Loop.mp4 54.2 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/9. LangChain's MultiServerMCPClient from the LangChain MCP Adapter.mp4 54.1 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/3. LLM.txt.mp4 53.9 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/6. Bridging the Gap The LangChain MCP Adapter Explained.mp4 53.7 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/2. How LLMs REALLY Use Tools Understanding Tool Calling.mp4 53.7 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/8. Simple SSE MCP Server.mp4 53.5 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/1. Why MCP (Model Context Protocol).mp4 53.1 MB
- 17. LangChain Glossary/7. LangChain Memory Theory Deepdive (LangGraph).mp4 53.0 MB
- 16. Useful tools when developing LLM Applications/3. LangChain VS LlamaIndex.mp4 50.2 MB
- 01. Introduction/3. Course Structure + How to get the best of Udemy PLEASE DO NOT SKIP.mp4 49.1 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. Wrapping Everything Router Agent.mp4 48.8 MB
- 09. Troubleshooting Section/1. Have a technical issue WATCH THIS FIRST. I Promise this will help!.mp4 48.3 MB
- 11. -------------------Introduction To LangGraph -------------------/5. LangGraph Core Components.mp4 46.8 MB
- 14. Agentic RAG/3. Boilerplate Setup for an Agentic RAG Agent with LangGraph.mp4 42.4 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/2. Environment Setup + ReAct Algorithm overview.mp4 40.9 MB
- 14. Agentic RAG/11. Building and Running the Complete LangGraph Agent.mp4 39.1 MB
- 14. Agentic RAG/4. Code Structure.mp4 38.7 MB
- 16. Useful tools when developing LLM Applications/2. TextSplitting Playground.mp4 37.2 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/10. What is Cursor.mp4 37.1 MB
- 03. Ice Breaker Real World Generative AI Agent application/6. Linkedin Data Processing- Part 5 Custom Search Agent Testing.mp4 36.5 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. OPTIONAL Manually Scraping the LangChain Documentation.mp4 36.4 MB
- 03. Ice Breaker Real World Generative AI Agent application/4. Linkedin Data Processing- Part 3 Tools, Agent Executor, create_react_agent.mp4 34.7 MB
- 03. Ice Breaker Real World Generative AI Agent application/1. Ice Breaker- What are we building here.mp4 34.5 MB
- 10. Let's Talk About LLM Applications In Production/8. Confidence in AI Results By Assaf Elovic & Harrison Chase.mp4 33.2 MB
- 12. Reflection Agent/5. LangSmith Tracing.mp4 32.8 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/1. What are we building ReAct AgentExecutor from scratch.mp4 32.6 MB
- 11. -------------------Introduction To LangGraph -------------------/10. Hands On Bringing Your ReAct Agent to Life Connecting Nodes into a Graph.mp4 32.5 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. Python Agent.mp4 32.4 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP Inspector.mp4 32.3 MB
- 13. Reflexion Agent/5. Revisor Agent.mp4 31.9 MB
- 11. -------------------Introduction To LangGraph -------------------/9. Hands On 43. Building Blocks Defining Your Agent's Nodes in LangGraph.mp4 30.8 MB
- 14. Agentic RAG/1. What are Building In this Section- Agentic RAG Architecture.mp4 30.2 MB
- 09. Troubleshooting Section/2. Tweet API- tweepy.errors.Forbidden 403 Forbidden.mp4 29.3 MB
- 14. Agentic RAG/9. Implementing a Web Search Node in LangGraph using Tavily API.mp4 29.3 MB
- 11. -------------------Introduction To LangGraph -------------------/7. Hands On Get Started Setting Up Your ReAct Agent Project Environment.mp4 28.8 MB
- 01. Introduction/4. Course's Community.mp4 26.7 MB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/5. Medium Analyzer- Retrieval Implementation Implementation with LCEL.mp4 26.1 MB
- 17. LangChain Glossary/6. LangChain Memory Intro- Co Reference Resolution.mp4 25.3 MB
- 10. Let's Talk About LLM Applications In Production/6. Official LangChain Academy Courses.mp4 24.5 MB
- 03. Ice Breaker Real World Generative AI Agent application/12. Real World Ice breaker Agents.mp4 24.1 MB
- 08. Prompt Engineering Theory/1. The GIST of LLMs.mp4 23.7 MB
- 12. Reflection Agent/3. Creating the Reflector Chain and the Tweet Reviosr Chain.mp4 23.6 MB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. Project Setup.mp4 21.5 MB
- 13. Reflexion Agent/2. Project Setup.mp4 21.4 MB
- 10. Let's Talk About LLM Applications In Production/2. LLM Application Development landscape.mp4 21.0 MB
- 11. -------------------Introduction To LangGraph -------------------/3. What are Graphs.mp4 20.1 MB
- 14. Agentic RAG/7. Fetching Context for LLMs The LangGraph Retrieve Node.mp4 19.8 MB
- 17. LangChain Glossary/2. Messages.mp4 19.1 MB
- 08. Prompt Engineering Theory/3. Zero Shot Prompting.mp4 19.0 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/8. Recap with LangSmith.mp4 18.9 MB
- 16. Useful tools when developing LLM Applications/1. LangChain Hub - Downloads prompt from the community.mp4 18.8 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/9. Which LLM to Use (OpenAI, Gemini, Anthropic, Mistral, Llama).mp4 18.8 MB
- 11. -------------------Introduction To LangGraph -------------------/4. LangGraph & Flow Engineering.mp4 18.7 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/9. Leveraging Cursor IDE for UI Improvements.mp4 18.1 MB
- 11. -------------------Introduction To LangGraph -------------------/6. --------- Hands On Implementing ReAct AgentExecutor with LangGraph ---------.mp4 18.0 MB
- 12. Reflection Agent/2. Project Setup.mp4 17.8 MB
- 14. Agentic RAG/12. Self RAG- Intro.mp4 17.4 MB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/4. Debugging LangChain Resolving LLM stop Token & Template Indentation Issues.mp4 16.7 MB
- 14. Agentic RAG/2. Improving RAG Quality with the Corrective RAG Flow.mp4 16.4 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/8. LangChain Version In Course (V0.3.3) - (No breaking changes in 0.3.3).mp4 15.8 MB
- 02. The GIST of LangChain- Get started by with your Hello World chain/4. Environment Variables and .env File.mp4 15.1 MB
- 03. Ice Breaker Real World Generative AI Agent application/3. Linkedin Data Processing - Part 2 - Agents Theory.mp4 13.8 MB
- 17. LangChain Glossary/3. RecursiveCharacterTextSplitter.mp4 13.1 MB
- 11. -------------------Introduction To LangGraph -------------------/1. What is LangGraph.mp4 12.1 MB
- 09. Troubleshooting Section/3. Pinecone AttributeError init is no longer a top-level attribute of pinecone.mp4 11.5 MB
- 17. LangChain Glossary/4. Document.mp4 9.5 MB
- 08. Prompt Engineering Theory/2. What is a Prompt Composition of a formal prompt.mp4 9.1 MB
- 14. Agentic RAG/6. Managing Information Flow in LangGraph The GraphState.mp4 9.1 MB
- 15. Intro to MCP - Model Context Protocol with LangChain/7. What are we MCBuilding.mp4 8.9 MB
- 01. Introduction/2. Course Objectives.mp4 8.7 MB
- 01. Introduction/1. Course Introduction.mp4 6.1 MB
- 12. Reflection Agent/1. What are we building.mp4 4.4 MB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. langchain-docs.zip 3.0 MB
- 14. Agentic RAG/51133263/9. Implementing a Web Search Node in LangGraph using Tavily API/meta.json 818.5 KB
- 14. Agentic RAG/51133263/9. Implementing a Web Search Node in LangGraph using Tavily API/meta_selected.json 116.9 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. code-interpreter-3-router-agent.zip 52.2 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. code-interpreter-3-router-agent-start-here.zip 51.8 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. code-interpreter-2-csv-agent.zip 51.7 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/4. rag-gist-4-retrieval-implementation-chains.zip 51.4 KB
- 14. Agentic RAG/51133263/9. Implementing a Web Search Node in LangGraph using Tavily API/raw.mpd 51.3 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/3. rag-gist-3-ingestion-implementation.zip 51.1 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. rag-gist-2-imports.zip 50.2 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. rag-gist-1-setup.zip 50.1 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/7. react-langchain-final.zip 49.1 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/6. react-langchain-3.zip 48.7 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/5. react-langchain-2.zip 48.6 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. code-interpreter-1-python-agent.zip 44.7 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/3. react-langchain-1.zip 41.5 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/2. react-langchain-final-0.zip 40.9 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/9.2 From ReAct Prompting to Modern Tool Calling.html 28.7 KB
- 03. Ice Breaker Real World Generative AI Agent application/5. Linkedin Data Processing- Part 4 Custom Search Agent Implementation.vtt 26.6 KB
- 03. Ice Breaker Real World Generative AI Agent application/2. Integrating Linkedin Data Processing - Part 1.vtt 26.4 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Building an AI LangChain Chat Assistant- Frontend with Streamlit (UI).vtt 25.7 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/7.1 LangChain Model Switching Groq API Integration.html 25.4 KB
- 11. -------------------Introduction To LangGraph -------------------/2. Why LangGraph LangGraph VS LangChain.vtt 22.3 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/4. Medium Analyzer- Retrieval Implementation Implementation with chains.vtt 19.6 KB
- 13. Reflexion Agent/4. Actor Agent.vtt 19.5 KB
- 14. Agentic RAG/13. Self RAG- Implementation.vtt 18.6 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/5. ReAct prompt, LLM Reasoning Engine, Output Parsing and Tool Execution.vtt 18.5 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/3. Defining Tools for our ReAct agent.vtt 18.1 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. Chat With Your PDF- FAISS Local Vectorstore.vtt 17.7 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/5. Your First LangChain application - Chaining a simple prompt.vtt 17.7 KB
- 14. Agentic RAG/8. Building a Relevance Filter for RAG using LangChain's Structured Output.vtt 15.3 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/5. mcpdoc.vtt 15.2 KB
- 17. LangChain Glossary/5. LangChain Token Limitation Handeling Strategies.vtt 15.2 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/3. Medium Analyzer- Ingestion Implementation.vtt 14.9 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/3. Project Setup (vscode) - optional.vtt 14.6 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. episode_info.csv 14.1 KB
- 03. Ice Breaker Real World Generative AI Agent application/9. Output Parsers- Getting Ready to work with a Frontend.vtt 14.0 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/4. Pinecone Vectorstore Ingestion.vtt 13.6 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. Optional RAG Pipeline Optimization featuring FireCrawl.vtt 13.6 KB
- 14. Agentic RAG/14. Adaptive RAG.vtt 13.3 KB
- 03. Ice Breaker Real World Generative AI Agent application/10. FullsStack App- Building our LLM powered by LangChain FullStack Application.vtt 13.0 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/5. Retrieval + Augmentation + Generation = RAG.vtt 12.8 KB
- 03. Ice Breaker Real World Generative AI Agent application/7. Optional Twitter Data Processing- Part 1- Scraping.vtt 12.8 KB
- 12. Reflection Agent/4. Defining our LangGraph Graph.vtt 12.6 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. Medium Analyzer- Class Review TextLoader,TextSplitter,OpenAIEmbeddings,Pinecone.vtt 12.2 KB
- 10. Let's Talk About LLM Applications In Production/7. Open Source LLMs VS Managed LLM Providers (Deepseek).vtt 12.2 KB
- 08. Prompt Engineering Theory/7. Prompt Engineering Quick Tips.vtt 12.1 KB
- 10. Let's Talk About LLM Applications In Production/1. LLM Applications in Production.vtt 12.0 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/9. LangChain's MultiServerMCPClient from the LangChain MCP Adapter.vtt 11.8 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. Project Setup (Pycharm) recommend).vtt 11.8 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/7. CallbackHandlers, ReAct Prompt and finalizing the ReAct Agent loop.vtt 11.5 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. CSV Agent.vtt 11.5 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/6. AgentAction, AgentFinish, ReAct Loop.vtt 11.5 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/6. Using Open Source Models With LangChain (Ollama, Llama3, Mistral).vtt 11.2 KB
- 03. Ice Breaker Real World Generative AI Agent application/11. Tracing application with LangSmith.vtt 11.1 KB
- 17. LangChain Glossary/7. LangChain Memory Theory Deepdive (LangGraph).vtt 11.0 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. Wrapping Everything Router Agent.vtt 10.7 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/11. Adding Sidebar and LangChain's color theme with Cursor Composer.vtt 10.3 KB
- 10. Let's Talk About LLM Applications In Production/3. LLMs in Production Privacy & Data Retention.vtt 10.2 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/7. Building an AI LangChain Chat Assistant- Memory.vtt 10.1 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. Python Agent.vtt 10.0 KB
- 08. Prompt Engineering Theory/4. Few Shot Prompting.vtt 10.0 KB
- 11. -------------------Introduction To LangGraph -------------------/8. Hands On Coding the Agent's Brain Implementing the ReAct Runnable.vtt 9.8 KB
- 08. Prompt Engineering Theory/5. Chain of Thought Prompting.vtt 9.8 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Documentation Helper In Production.vtt 9.6 KB
- 17. LangChain Glossary/1. ChatModels.vtt 9.3 KB
- 14. Agentic RAG/11. Building and Running the Complete LangGraph Agent.vtt 9.3 KB
- 13. Reflexion Agent/6. ToolNode - Executing Tools.vtt 9.1 KB
- 11. -------------------Introduction To LangGraph -------------------/11. Hands On Running Our LangGraph React Agent with Function Calling.vtt 9.1 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Environment Setup.vtt 9.1 KB
- 03. Ice Breaker Real World Generative AI Agent application/8. Optional Twitter Data Processing- Part 2- Agents.vtt 8.9 KB
- 11. -------------------Introduction To LangGraph -------------------/10. Hands On Bringing Your ReAct Agent to Life Connecting Nodes into a Graph.vtt 8.8 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/6. Function Tool Calling in LangChain.vtt 8.8 KB
- 10. Let's Talk About LLM Applications In Production/5. Finished course Whats next!.vtt 8.8 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/1. What is LangChain LangChain Under 6 Minutes.vtt 8.7 KB
- 13. Reflexion Agent/7. Building our LangGraph Graph.vtt 8.6 KB
- 09. Troubleshooting Section/2. Tweet API- tweepy.errors.Forbidden 403 Forbidden.vtt 8.4 KB
- 08. Prompt Engineering Theory/6. ReAct Prompting.vtt 8.4 KB
- 14. Agentic RAG/4. Code Structure.vtt 8.3 KB
- 03. Ice Breaker Real World Generative AI Agent application/4. Linkedin Data Processing- Part 3 Tools, Agent Executor, create_react_agent.vtt 8.2 KB
- 11. -------------------Introduction To LangGraph -------------------/4. LangGraph & Flow Engineering.vtt 8.0 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/2. Environment Setup + ReAct Algorithm overview.vtt 7.8 KB
- 14. Agentic RAG/5. LangChain Vector Store Ingestion Pipeline (WebLoader, ChromaDB).vtt 7.8 KB
- 01. Introduction/2. Course Objectives.vtt 7.8 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/3. LLM.txt.vtt 7.6 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/1. What are we building (A slim Version of GPT Code-Interpreter).vtt 7.5 KB
- 13. Reflexion Agent/1. What are we building.vtt 7.5 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/2. How LLMs REALLY Use Tools Understanding Tool Calling.vtt 7.3 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. Medium Analyzer- Boilerplate Project Setup.vtt 7.3 KB
- 11. -------------------Introduction To LangGraph -------------------/9. Hands On 43. Building Blocks Defining Your Agent's Nodes in LangGraph.vtt 7.2 KB
- 11. -------------------Introduction To LangGraph -------------------/5. LangGraph Core Components.vtt 7.0 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/1. Why MCP (Model Context Protocol).vtt 6.9 KB
- 11. -------------------Introduction To LangGraph -------------------/1. What is LangGraph.vtt 6.7 KB
- 03. Ice Breaker Real World Generative AI Agent application/6. Linkedin Data Processing- Part 5 Custom Search Agent Testing.vtt 6.6 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/7. Function Calling Vs ReAct.vtt 6.4 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/10. What is Cursor.vtt 6.3 KB
- 03. Ice Breaker Real World Generative AI Agent application/3. Linkedin Data Processing - Part 2 - Agents Theory.vtt 6.1 KB
- 11. -------------------Introduction To LangGraph -------------------/7. Hands On Get Started Setting Up Your ReAct Agent Project Environment.vtt 6.0 KB
- 12. Reflection Agent/3. Creating the Reflector Chain and the Tweet Reviosr Chain.vtt 6.0 KB
- 10. Let's Talk About LLM Applications In Production/4. Generative UIUX featuring CopilotKit.vtt 5.8 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/5. Medium Analyzer- Retrieval Implementation Implementation with LCEL.vtt 5.8 KB
- 14. Agentic RAG/10. Creating the LLM Generation Chain and Node for LangGraph.vtt 5.7 KB
- 14. Agentic RAG/9. Implementing a Web Search Node in LangGraph using Tavily API.vtt 5.7 KB
- 16. Useful tools when developing LLM Applications/1. LangChain Hub - Downloads prompt from the community.vtt 5.5 KB
- 16. Useful tools when developing LLM Applications/2. TextSplitting Playground.vtt 5.4 KB
- 09. Troubleshooting Section/4. LangChain Version In Course (V0.3.3).vtt 5.3 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/6. Bridging the Gap The LangChain MCP Adapter Explained.vtt 5.3 KB
- 12. Reflection Agent/2. Project Setup.vtt 5.3 KB
- 13. Reflexion Agent/5. Revisor Agent.vtt 5.2 KB
- 14. Agentic RAG/3. Boilerplate Setup for an Agentic RAG Agent with LangGraph.vtt 5.1 KB
- 18. Bonus/1. Bonus.vtt 5.0 KB
- 10. Let's Talk About LLM Applications In Production/2. LLM Application Development landscape.vtt 5.0 KB
- 08. Prompt Engineering Theory/1. The GIST of LLMs.vtt 4.8 KB
- 11. -------------------Introduction To LangGraph -------------------/3. What are Graphs.vtt 4.7 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. Project Setup.vtt 4.6 KB
- 01. Introduction/3. Course Structure + How to get the best of Udemy PLEASE DO NOT SKIP.vtt 4.5 KB
- 17. LangChain Glossary/2. Messages.vtt 4.5 KB
- 01. Introduction/1. Course Introduction.vtt 4.2 KB
- 16. Useful tools when developing LLM Applications/3. LangChain VS LlamaIndex.vtt 4.1 KB
- 17. LangChain Glossary/6. LangChain Memory Intro- Co Reference Resolution.vtt 4.1 KB
- 09. Troubleshooting Section/1. Have a technical issue WATCH THIS FIRST. I Promise this will help!.vtt 4.1 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP Inspector.vtt 4.0 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/4. Environment Variables and .env File.vtt 3.9 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. OPTIONAL Manually Scraping the LangChain Documentation.vtt 3.8 KB
- 08. Prompt Engineering Theory/2. What is a Prompt Composition of a formal prompt.vtt 3.7 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/1. What are we building (RAG).vtt 3.7 KB
- 13. Reflexion Agent/2. Project Setup.vtt 3.6 KB
- 08. Prompt Engineering Theory/3. Zero Shot Prompting.vtt 3.5 KB
- 12. Reflection Agent/5. LangSmith Tracing.vtt 3.5 KB
- 03. Ice Breaker Real World Generative AI Agent application/10. index.html 3.4 KB
- 01. Introduction/4. Course's Community.vtt 3.4 KB
- 10. Let's Talk About LLM Applications In Production/6. Official LangChain Academy Courses.vtt 3.3 KB
- 14. Agentic RAG/1. What are Building In this Section- Agentic RAG Architecture.vtt 3.2 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/8. Simple SSE MCP Server.vtt 3.2 KB
- 03. Ice Breaker Real World Generative AI Agent application/12. Real World Ice breaker Agents.vtt 3.1 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/5. ice_breaker.py 3.1 KB
- 11. -------------------Introduction To LangGraph -------------------/6. --------- Hands On Implementing ReAct AgentExecutor with LangGraph ---------.vtt 3.0 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/1. What are we building ReAct AgentExecutor from scratch.vtt 2.9 KB
- 14. Agentic RAG/6. Managing Information Flow in LangGraph The GraphState.vtt 2.9 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/8. Recap with LangSmith.vtt 2.9 KB
- 13. Reflexion Agent/3. Section Resources.html 2.8 KB
- 04. Diving Deep Into ReAct Agents- Whats is the magic/4. Debugging LangChain Resolving LLM stop Token & Template Indentation Issues.vtt 2.7 KB
- 09. Troubleshooting Section/2. twitter_with_stubs.py 2.6 KB
- 14. Agentic RAG/7. Fetching Context for LLMs The LangGraph Retrieve Node.vtt 2.6 KB
- 17. LangChain Glossary/3. RecursiveCharacterTextSplitter.vtt 2.1 KB
- 09. Troubleshooting Section/2. edens_tweets.json 2.0 KB
- 14. Agentic RAG/12. Self RAG- Intro.vtt 1.9 KB
- 03. Ice Breaker Real World Generative AI Agent application/1. Ice Breaker- What are we building here.vtt 1.9 KB
- 15. Intro to MCP - Model Context Protocol with LangChain/7. What are we MCBuilding.vtt 1.9 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/8. LangChain Version In Course (V0.3.3) - (No breaking changes in 0.3.3).vtt 1.8 KB
- 09. Troubleshooting Section/3. Pinecone AttributeError init is no longer a top-level attribute of pinecone.vtt 1.8 KB
- 12. Reflection Agent/1. What are we building.vtt 1.7 KB
- 14. Agentic RAG/2. Improving RAG Quality with the Corrective RAG Flow.vtt 1.7 KB
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. main.py 1.5 KB
- 17. LangChain Glossary/4. Document.vtt 1.5 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/9. Leveraging Cursor IDE for UI Improvements.vtt 1.5 KB
- 02. The GIST of LangChain- Get started by with your Hello World chain/9. Which LLM to Use (OpenAI, Gemini, Anthropic, Mistral, Llama).vtt 1.3 KB
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/6. main.py 1.2 KB
- 09. Troubleshooting Section/2. twitter.py 1.2 KB
- 01. Introduction/5. Course Resources.html 1.0 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. download_docs.py 1.0 KB
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. troubleshooting.txt 398 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/1. Medium-Blog-Vector-Database-What-is-it-and-why-you-should-know-it-.txt 182 bytes
- 03. Ice Breaker Real World Generative AI Agent application/2. Eden-Marco-Linkedin-Gist.txt 146 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/9. Course-LLM-Compatibility-Per-Project.txt 110 bytes
- 17. LangChain Glossary/4. LangChain-Document-API-Reference.txt 101 bytes
- 13. Reflexion Agent/6. LangGraph-ToolNode-API-Reference.txt 96 bytes
- 11. -------------------Introduction To LangGraph -------------------/7. Github-Commit.txt 93 bytes
- 11. -------------------Introduction To LangGraph -------------------/8. Github-Commit.txt 93 bytes
- 11. -------------------Introduction To LangGraph -------------------/9. Github-Commit.txt 93 bytes
- 11. -------------------Introduction To LangGraph -------------------/10. Github-Commit.txt 93 bytes
- 11. -------------------Introduction To LangGraph -------------------/11. Github-Commit.txt 93 bytes
- 12. Reflection Agent/2. Github-Commit-Code.txt 93 bytes
- 12. Reflection Agent/3. Github-Commit-Code.txt 93 bytes
- 12. Reflection Agent/4. Github-Commit-Code.txt 93 bytes
- 13. Reflexion Agent/5. Github-Commit-Code.txt 93 bytes
- 13. Reflexion Agent/6. Github-Commit-Code.txt 93 bytes
- 13. Reflexion Agent/7. Github-Commit-Code.txt 93 bytes
- 14. Agentic RAG/11. Github-Commit-Code.txt 93 bytes
- 14. Agentic RAG/13. Github-Commit-Code.txt 93 bytes
- 14. Agentic RAG/14. Github-Commit-Code.txt 93 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/8. My-Github-Commit.txt 93 bytes
- 03. Ice Breaker Real World Generative AI Agent application/7. Twitter-Troubleshooting-Discord-Thread.txt 88 bytes
- 11. -------------------Introduction To LangGraph -------------------/6. LangGraph-ReAct-Course-Repository.txt 87 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/4. -Github-Final-Code-for-this-video.txt 84 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/1. New-MCP-Course-Coupon-Included.txt 84 bytes
- 03. Ice Breaker Real World Generative AI Agent application/7. Tweet-Scraping-Source-Code-Implementation-Repository-.txt 83 bytes
- 10. Let's Talk About LLM Applications In Production/8. CAIR-Blog-Confidence-in-AI-Results-By-Assaf-Elovic-Harrison-Chase.txt 80 bytes
- 17. LangChain Glossary/3. Text-Splitting-by-structured-based.txt 80 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/5. -Github-Final-Code.txt 76 bytes
- 12. Reflection Agent/1. Project-Repository.txt 75 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. FireCrawl-LangChain-Integration.txt 74 bytes
- 13. Reflexion Agent/1. Github-Repository-for-Reflexion-Agent.txt 74 bytes
- 12. Reflection Agent/5. My-LangSmith-Trace.txt 73 bytes
- 13. Reflexion Agent/7. My-LangSmith-Trace.txt 73 bytes
- 11. -------------------Introduction To LangGraph -------------------/4. New-LangGraph-Course-Coupon.txt 71 bytes
- 13. Reflexion Agent/1. LangChain-Reflexion-Blog.txt 71 bytes
- 03. Ice Breaker Real World Generative AI Agent application/7. Twitter-Scraping-Troubleshooting-Video.txt 70 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. PineconeVectorStore.txt 69 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/3. LangChain-API-Documentation-V0.1.txt 69 bytes
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. Goodbye-CVEs-Hello-langchain-experimental.txt 69 bytes
- 09. Troubleshooting Section/3. LangChain-Pinecone-Official-Documentation.txt 68 bytes
- 03. Ice Breaker Real World Generative AI Agent application/7. Eden-Marco-Tweets-Github-GIST.txt 66 bytes
- 03. Ice Breaker Real World Generative AI Agent application/9. LangChain-Structured-Output-PydanticOutputParser-.txt 66 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. LangChain-FAISS.txt 66 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. CharacterTextSplitter.txt 65 bytes
- 17. LangChain Glossary/3. How-to-recursively-split-text-by-characters.txt 65 bytes
- 03. Ice Breaker Real World Generative AI Agent application/4. LangChain-AgentExecutor-Documentation.txt 64 bytes
- 17. LangChain Glossary/4. LangChain-Document-Loaders.txt 64 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/4. .env.example-file.txt 63 bytes
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/3. LangChain-Python-Agent-Documentation.txt 63 bytes
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. OpenAI-Functions-Official-Documentation.txt 62 bytes
- 13. Reflexion Agent/6. Tool-Calls-In-LangGraph-Official-Documentation.txt 62 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/9. My-Github-Commit.txt 62 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. LangChain-PDFLoader.txt 61 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Session-State-Documentation.txt 61 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. DocumentLoaders-Conceptual-Guide-.txt 60 bytes
- 10. Let's Talk About LLM Applications In Production/3. OpenAI-Official-Data-Usage-Policies.txt 60 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/6. LangChain-Ollama-Official-Documentation.txt 59 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Documentation-Helper-Github-Repository.txt 59 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/3. llms.txt-By-LangChain.txt 59 bytes
- 03. Ice Breaker Real World Generative AI Agent application/9. LangChain-Output-Parsers-Official-Documentation.txt 58 bytes
- 17. LangChain Glossary/7. LangChain-Memory-Official.txt 57 bytes
- 03. Ice Breaker Real World Generative AI Agent application/5. LangChain-ReAct-Agent.txt 56 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. Text-Splitters-Conceptual-Guide-.txt 56 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/5. LangChain-LLM-Chain-Quickstart.txt 54 bytes
- 04. Diving Deep Into ReAct Agents- Whats is the magic/3. LangChain-custom-tools-official-documentation.txt 54 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/6. LangChain-MCP-Adapters-Github-Repository.txt 54 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/2. LangChain-TextEmbeddings.txt 52 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP-Inspector-Official-Documentation.txt 52 bytes
- 03. Ice Breaker Real World Generative AI Agent application/3. LangChain-Agents-Documentation.txt 51 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. handling-environment-variables-in-python-in-case-you-arent-familiar-with-it-.txt 50 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/3. handling-environment-variables-with-python-in-case-you-are-not-familiar-with-it-.txt 50 bytes
- 03. Ice Breaker Real World Generative AI Agent application/4. LangChain-Tools-Documentation.txt 49 bytes
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/4. LangChain-CSV-Agent-Documentation.txt 49 bytes
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/5. LangChain-Router-Chain.txt 49 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/4. MCP-Inspector-open-source-Repository.txt 49 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. pipenv-crash-course-In-case-you-are-not-familiar-with-pipenv-.txt 48 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/3. pipenv-crash-course-In-case-you-are-not-familiar-with-pipenv-.txt 48 bytes
- 10. Let's Talk About LLM Applications In Production/4. CoAgents-By-Ariel-Weinberger.txt 48 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. LangChain-Python-Documentation.txt 47 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/3. LangChain-Python-Documentation.txt 47 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/5. LangChain-Python-Documentation.txt 47 bytes
- 10. Let's Talk About LLM Applications In Production/3. OpenAI-Official-Privacy-Policy.txt 47 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Chat-LangChain-Github.txt 46 bytes
- 16. Useful tools when developing LLM Applications/2. Text-Splitter-Playground-URL.txt 46 bytes
- 17. LangChain Glossary/3. LangChain-Text-Splitting-Playground.txt 46 bytes
- 09. Troubleshooting Section/2. Tweepy-Client-Documentation.txt 45 bytes
- 12. Reflection Agent/1. LangChain-Reflection-Agent-Blog.txt 45 bytes
- 12. Reflection Agent/4. LangGraph-Official-Documentation.txt 41 bytes
- 17. LangChain Glossary/6. Coreference-Wikipedia.txt 41 bytes
- 01. Introduction/1. Course-Repository.txt 40 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. Course-IceBreaker-Github-Repository.txt 40 bytes
- 03. Ice Breaker Real World Generative AI Agent application/3. Course-Repository.txt 40 bytes
- 03. Ice Breaker Real World Generative AI Agent application/4. Course-Repository.txt 40 bytes
- 03. Ice Breaker Real World Generative AI Agent application/5. Course-Repository.txt 40 bytes
- 03. Ice Breaker Real World Generative AI Agent application/7. Github-Course-Repository.txt 40 bytes
- 03. Ice Breaker Real World Generative AI Agent application/8. Github-Course-Repository.txt 40 bytes
- 03. Ice Breaker Real World Generative AI Agent application/10. Course-Repository.txt 40 bytes
- 09. Troubleshooting Section/1. LangChain-Slack-Community.txt 40 bytes
- 09. Troubleshooting Section/2. Ice-Breaker-Github-Repository.txt 40 bytes
- 01. Introduction/1. Lets-Connect-on-Linkedin-.txt 39 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. FireCrawl-Official-Documentation.txt 39 bytes
- 12. Reflection Agent/2. python-dotenv-Official-Documentation.txt 39 bytes
- 03. Ice Breaker Real World Generative AI Agent application/3. Chain-Of-Thought-Research-paper.txt 38 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Github-Repository.txt 38 bytes
- 08. Prompt Engineering Theory/5. Chain-Of-Thought-Research-paper.txt 38 bytes
- 15. Intro to MCP - Model Context Protocol with LangChain/5. LangChain-mcpdoc-MCP-Server-Github-Repo.txt 38 bytes
- 03. Ice Breaker Real World Generative AI Agent application/2. Scrapin.io-Register-URL.txt 36 bytes
- 03. Ice Breaker Real World Generative AI Agent application/3. ReAct-SYNERGIZING-REASONING-AND-ACTING-IN-LANGUAGE-MODELS-Paper.txt 36 bytes
- 08. Prompt Engineering Theory/3. N-Shot-Prompting-Tokyo-University-Research-Paper.txt 36 bytes
- 08. Prompt Engineering Theory/4. N-Shot-Prompting-Tokyo-University-Research-Paper.txt 36 bytes
- 08. Prompt Engineering Theory/6. REAC-T-SYNERGIZING-REASONING-AND-ACTING-IN-LANGUAGE-MODELS-Paper.txt 36 bytes
- 10. Let's Talk About LLM Applications In Production/4. CoAgents-Documentation-by-CopilotKit.txt 35 bytes
- 03. Ice Breaker Real World Generative AI Agent application/7. Python-Tweepy-Package.txt 34 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Chat-Component-Github-Repository.txt 34 bytes
- 04. Diving Deep Into ReAct Agents- Whats is the magic/4. Stop-Arguments-In-ChatModels.txt 32 bytes
- 07. Building a slim ChatGPT Code-Interpreter (Advanced Agents, OpenAI Functions)/2. qrcode-Python-Documentation.txt 32 bytes
- 13. Reflexion Agent/1. Reflexion-Research-Paper.txt 32 bytes
- 14. Agentic RAG/12. Self-RAG-Paper.txt 32 bytes
- 03. Ice Breaker Real World Generative AI Agent application/5. LangSmith-Hub.txt 31 bytes
- 03. Ice Breaker Real World Generative AI Agent application/8. Tweepy-official-documentation.txt 31 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/6. Llama3-Official-Website.txt 30 bytes
- 01. Introduction/4. Course-Discord-Server-Link2.txt 29 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/2. Course-Discord-Server.txt 29 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/5. Course-Discord-Server.txt 29 bytes
- 03. Ice Breaker Real World Generative AI Agent application/3. Course-Discord-Server.txt 29 bytes
- 09. Troubleshooting Section/1. Course-Discord-Server-URL.txt 29 bytes
- 03. Ice Breaker Real World Generative AI Agent application/11. LangSmith.txt 28 bytes
- 12. Reflection Agent/5. LangSmith-Platform.txt 28 bytes
- 03. Ice Breaker Real World Generative AI Agent application/10. Course-Discord-Server.txt 27 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/12. Chat-LangChain.txt 27 bytes
- 08. Prompt Engineering Theory/2. Course-Discord-Server.txt 27 bytes
- 09. Troubleshooting Section/1. Chat-LangChain.txt 27 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/6. Streamlit-Documentation.txt 26 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/8. FireCrawl.dev.txt 26 bytes
- 10. Let's Talk About LLM Applications In Production/4. CopilotKit-Official-Website.txt 26 bytes
- 12. Reflection Agent/2. Poetry-Official-Documentation.txt 26 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/2. Pinecone-Official-Website.txt 24 bytes
- 18. Bonus/1. langjobs.dev.txt 24 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/6. Mistral-AI-Official-Website.txt 19 bytes
- 02. The GIST of LangChain- Get started by with your Hello World chain/6. Ollama-Official-Website.txt 19 bytes
- 03. Ice Breaker Real World Generative AI Agent application/5. Tavily-Search-API.txt 19 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/9. Cursor-Official-Website.txt 19 bytes
- 06. Building a documentation assistant (Embeddings, VectorDBs, Retrieval, Memory)/10. Cursor-Official-Website.txt 19 bytes
- 05. The GIST of RAG- Embeddings, Vector Databases and, & Retrieval/6. FAISS-Documentation.txt 17 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.