Udemy - Master linear algebra theory and implementation in code (3.2025)
File List
- 15. Quadratic form and definiteness/6. Application of the normalized quadratic form PCA.mp4 242.5 MB
- 12. Least-squares for model-fitting in statistics/7. Least-squares application 2.mp4 233.8 MB
- 05. Matrix multiplications/22. Code challenge The matrix asymmetry index.mp4 180.0 MB
- 13. Eigendecomposition/19. Code challenge GED in small and large matrices.mp4 170.4 MB
- 13. Eigendecomposition/9. Matrix powers via diagonalization.mp4 169.7 MB
- 14. Singular value decomposition/7. Spectral theory of matrices.mp4 133.0 MB
- 13. Eigendecomposition/15. Code challenge reconstruct a matrix from eigenlayers.mp4 131.6 MB
- 12. Least-squares for model-fitting in statistics/6. Least-squares application 1.mp4 130.9 MB
- 11. Projections and orthogonalization/10. Code challenge Inverse via QR.mp4 125.4 MB
- 14. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.mp4 114.5 MB
- 13. Eigendecomposition/10. Code challenge eigendecomposition of matrix differences.mp4 112.9 MB
- 14. Singular value decomposition/3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.mp4 111.5 MB
- 04. Introduction to matrices/3. A zoo of matrices.mp4 105.1 MB
- 06. Matrix rank/3. Computing rank theory and practice.mp4 103.5 MB
- 14. Singular value decomposition/16. Code challenge Why you avoid the inverse.mp4 100.8 MB
- 10. Matrix inverse/5. Code challenge Implement the MCA algorithm!!.mp4 99.4 MB
- 14. Singular value decomposition/15. Code challenge Create matrix with desired condition number.mp4 93.1 MB
- 14. Singular value decomposition/1. Singular value decomposition (SVD).mp4 93.0 MB
- 11. Projections and orthogonalization/8. Code challenge Gram-Schmidt algorithm.mp4 91.6 MB
- 14. Singular value decomposition/8. SVD for low-rank approximations.mp4 91.6 MB
- 15. Quadratic form and definiteness/4. Code challenge Visualize the normalized quadratic form.mp4 88.9 MB
- 15. Quadratic form and definiteness/7. Quadratic form of generalized eigendecomposition.mp4 88.5 MB
- 08. Solving systems of equations/1. Systems of equations algebra and geometry.mp4 86.8 MB
- 08. Solving systems of equations/5. Reduced row echelon form.mp4 86.1 MB
- 05. Matrix multiplications/6. Matrix-vector multiplication.mp4 86.1 MB
- 14. Singular value decomposition/9. Convert singular values to percent variance.mp4 82.5 MB
- 14. Singular value decomposition/12. SVD, matrix inverse, and pseudoinverse.mp4 82.5 MB
- 01. Introductions/3. An enticing start to a linear algebra course!.mp4 81.8 MB
- 11. Projections and orthogonalization/7. QR decomposition.mp4 81.3 MB
- 10. Matrix inverse/11. Pseudo-inverse, part 1.mp4 81.2 MB
- 04. Introduction to matrices/13. Broadcasting matrix arithmetic.mp4 78.7 MB
- 05. Matrix multiplications/12. Additive and multiplicative symmetric matrices.mp4 76.5 MB
- 12. Least-squares for model-fitting in statistics/4. Least-squares via row-reduction.mp4 76.0 MB
- 05. Matrix multiplications/10. Code challenge Geometric transformations via matrix multiplications.mp4 75.7 MB
- 09. Matrix determinant/7. Code challenge determinant of shifted matrices.mp4 73.8 MB
- 03. Vectors/11. Dot product geometry sign and orthogonality.mp4 73.2 MB
- 14. Singular value decomposition/4. Relation between singular values and eigenvalues.mp4 73.0 MB
- 13. Eigendecomposition/2. Finding eigenvalues.mp4 72.8 MB
- 05. Matrix multiplications/20. Matrix norms.mp4 68.7 MB
- 11. Projections and orthogonalization/4. Code challenge decompose vector to orthogonal components.mp4 67.6 MB
- 03. Vectors/1. Algebraic and geometric interpretations of vectors.mp4 66.9 MB
- 03. Vectors/5. Dot product properties associative, distributive, commutative.mp4 66.3 MB
- 03. Vectors/18. Vector cross product.mp4 65.7 MB
- 11. Projections and orthogonalization/2. Projections in R^N.mp4 64.6 MB
- 10. Matrix inverse/6. Computing the inverse via row reduction.mp4 64.6 MB
- 10. Matrix inverse/9. One-sided inverses in code.mp4 63.9 MB
- 09. Matrix determinant/3. Code challenge determinant of small and large singular matrices.mp4 63.7 MB
- 15. Quadratic form and definiteness/2. The quadratic form in geometry.mp4 63.2 MB
- 05. Matrix multiplications/8. 2D transformation matrices.mp4 63.0 MB
- 06. Matrix rank/10. Making a matrix full-rank by shifting.mp4 61.6 MB
- 13. Eigendecomposition/5. Code challenge eigenvalues of random matrices.mp4 61.6 MB
- 11. Projections and orthogonalization/11. Code challenge Prove and demonstrate the Sherman-Morrison inverse.mp4 61.6 MB
- 13. Eigendecomposition/6. Finding eigenvectors.mp4 61.5 MB
- 09. Matrix determinant/8. Code challenge determinant of matrix product.mp4 58.9 MB
- 15. Quadratic form and definiteness/8. Matrix definiteness, geometry, and eigenvalues.mp4 58.1 MB
- 06. Matrix rank/6. Code challenge reduced-rank matrix via multiplication.mp4 57.6 MB
- 10. Matrix inverse/4. The MCA algorithm to compute the inverse.mp4 57.5 MB
- 13. Eigendecomposition/4. Code challenge eigenvalues of diagonal and triangular matrices.mp4 57.1 MB
- 03. Vectors/20. Hermitian transpose (a.k.a. conjugate transpose).mp4 56.8 MB
- 05. Matrix multiplications/18. Code challenge Fourier transform via matrix multiplication!.mp4 56.7 MB
- 05. Matrix multiplications/9. Code challenge Pure and impure rotation matrices.mp4 56.2 MB
- 03. Vectors/4. Vector-vector multiplication the dot product.mp4 56.1 MB
- 14. Singular value decomposition/14. Condition number of a matrix.mp4 56.1 MB
- 03. Vectors/13. Code challenge Cauchy-Schwarz inequality.mp4 54.7 MB
- 03. Vectors/26. Span.mp4 54.1 MB
- 13. Eigendecomposition/13. Eigendecomposition of symmetric matrices.mp4 54.1 MB
- 13. Eigendecomposition/18. Generalized eigendecomposition.mp4 52.7 MB
- 10. Matrix inverse/1. Matrix inverse Concept and applications.mp4 51.6 MB
- 11. Projections and orthogonalization/3. Orthogonal and parallel vector components.mp4 51.1 MB
- 03. Vectors/28. Linear independence.mp4 50.8 MB
- 13. Eigendecomposition/8. Diagonalization.mp4 50.4 MB
- 05. Matrix multiplications/16. Multiplication of two symmetric matrices.mp4 48.8 MB
- 13. Eigendecomposition/17. Code challenge trace and determinant, eigenvalues sum and product.mp4 48.8 MB
- 03. Vectors/3. Vector-scalar multiplication.mp4 48.6 MB
- 03. Vectors/22. Code challenge dot products with unit vectors.mp4 48.2 MB
- 15. Quadratic form and definiteness/1. The quadratic form in algebra.mp4 47.9 MB
- 14. Singular value decomposition/10. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.mp4 47.5 MB
- 04. Introduction to matrices/12. Code challenge linearity of trace.mp4 47.3 MB
- 11. Projections and orthogonalization/1. Projections in R^2.mp4 45.8 MB
- 15. Quadratic form and definiteness/5. Eigenvectors and the quadratic form surface.mp4 45.4 MB
- 05. Matrix multiplications/19. Frobenius dot product.mp4 44.9 MB
- 03. Vectors/2. Vector addition and subtraction.mp4 44.9 MB
- 04. Introduction to matrices/8. Transpose.mp4 43.9 MB
- 06. Matrix rank/11. Code challenge is this vector in the span of this set.mp4 43.9 MB
- 03. Vectors/7. Code challenge is the dot product commutative.mp4 42.5 MB
- 12. Least-squares for model-fitting in statistics/1. Introduction to least-squares.mp4 40.1 MB
- 03. Vectors/21. Interpreting and creating unit vectors.mp4 39.4 MB
- 08. Solving systems of equations/6. Code challenge RREF of matrices with different sizes and ranks.mp4 39.2 MB
- 13. Eigendecomposition/12. Eigenvectors of repeated eigenvalues.mp4 38.7 MB
- 01. Introductions/5. Maximizing your Udemy experience.mp4 38.1 MB
- 03. Vectors/15. Code challenge dot product sign and scalar multiplication.mp4 37.5 MB
- 03. Vectors/24. Subspaces.mp4 37.3 MB
- 04. Introduction to matrices/11. Diagonal and trace.mp4 37.0 MB
- 03. Vectors/29. Basis.mp4 36.5 MB
- 03. Vectors/23. Dimensions and fields in linear algebra.mp4 35.4 MB
- 12. Least-squares for model-fitting in statistics/8. Code challenge Least-squares via QR decomposition.mp4 34.9 MB
- 05. Matrix multiplications/21. Code challenge conditions for self-adjoint.mp4 34.8 MB
- 10. Matrix inverse/7. Code challenge inverse of a diagonal matrix.mp4 34.8 MB
- 05. Matrix multiplications/5. Order-of-operations on matrices.mp4 34.3 MB
- 02. Get the course materials/1. How to download and use course materials.mp4 33.6 MB
- 08. Solving systems of equations/3. Gaussian elimination.mp4 33.0 MB
- 09. Matrix determinant/4. Determinant of a 3x3 matrix.mp4 33.0 MB
- 06. Matrix rank/7. Code challenge scalar multiplication and rank.mp4 32.9 MB
- 13. Eigendecomposition/1. What are eigenvalues and eigenvectors.mp4 32.7 MB
- 07. Matrix spaces/4. Null space and left null space of a matrix.mp4 32.4 MB
- 05. Matrix multiplications/3. Code challenge matrix multiplication by layering.mp4 32.4 MB
- 05. Matrix multiplications/15. Code challenge symmetry of combined symmetric matrices.mp4 31.8 MB
- 07. Matrix spaces/2. Column space, visualized in code.mp4 31.4 MB
- 06. Matrix rank/4. Rank of added and multiplied matrices.mp4 30.9 MB
- 03. Vectors/17. Outer product.mp4 30.7 MB
- 10. Matrix inverse/12. Code challenge pseudoinverse of invertible matrices.mp4 30.7 MB
- 04. Introduction to matrices/5. Matrix addition and subtraction.mp4 30.3 MB
- 06. Matrix rank/1. Rank concepts, terms, and applications.mp4 29.6 MB
- 07. Matrix spaces/1. Column space of a matrix.mp4 29.4 MB
- 05. Matrix multiplications/1. Introduction to standard matrix multiplication.mp4 28.6 MB
- 03. Vectors/6. Code challenge dot products with matrix columns.mp4 28.2 MB
- 10. Matrix inverse/2. Computing the inverse in code.mp4 27.8 MB
- 06. Matrix rank/8. Rank of A^TA and AA^T.mp4 27.5 MB
- 11. Projections and orthogonalization/6. Gram-Schmidt procedure.mp4 26.7 MB
- 05. Matrix multiplications/2. Four ways to think about matrix multiplication.mp4 26.2 MB
- 07. Matrix spaces/7. Example of the four subspaces.mp4 25.5 MB
- 07. Matrix spaces/5. Columnleft-null and rownull spaces are orthogonal.mp4 25.3 MB
- 13. Eigendecomposition/7. Eigendecomposition by hand two examples.mp4 24.0 MB
- 07. Matrix spaces/3. Row space of a matrix.mp4 23.9 MB
- 08. Solving systems of equations/7. Matrix spaces after row reduction.mp4 23.7 MB
- 04. Introduction to matrices/7. Code challenge is matrix-scalar multiplication a linear operation.mp4 23.4 MB
- 12. Least-squares for model-fitting in statistics/2. Least-squares via left inverse.mp4 23.2 MB
- 11. Projections and orthogonalization/5. Orthogonal matrices.mp4 23.0 MB
- 15. Quadratic form and definiteness/10. Proof Eigenvalues and matrix definiteness.mp4 22.5 MB
- 10. Matrix inverse/8. Left inverse and right inverse.mp4 22.3 MB
- 12. Least-squares for model-fitting in statistics/3. Least-squares via orthogonal projection.mp4 22.0 MB
- 14. Singular value decomposition/13. SVD, (pseudo)inverse, and left-inverse.mp4 21.8 MB
- 05. Matrix multiplications/17. Code challenge standard and Hadamard multiplication for diagonal matrices.mp4 21.8 MB
- 13. Eigendecomposition/11. Eigenvectors of distinct eigenvalues.mp4 21.6 MB
- 11. Projections and orthogonalization/12. Code challenge A^TA = R^TR.mp4 20.7 MB
- 07. Matrix spaces/6. Dimensions of columnrownull spaces.mp4 20.2 MB
- 10. Matrix inverse/3. Inverse of a 2x2 matrix.mp4 20.2 MB
- 05. Matrix multiplications/11. Additive and multiplicative matrix identities.mp4 19.6 MB
- 14. Singular value decomposition/6. SVD and the four subspaces.mp4 19.2 MB
- 09. Matrix determinant/5. Code challenge large matrices with row exchanges.mp4 19.2 MB
- 07. Matrix spaces/8. More on Ax=b and Ax=0.mp4 18.6 MB
- 03. Vectors/8. Vector length.mp4 18.3 MB
- 12. Least-squares for model-fitting in statistics/5. Model-predicted values and residuals.mp4 18.2 MB
- 06. Matrix rank/12. Course tangent self-accountability in online learning.mp4 17.8 MB
- 08. Solving systems of equations/4. Echelon form and pivots.mp4 17.6 MB
- 09. Matrix determinant/1. Determinant concept and applications.mp4 17.6 MB
- 03. Vectors/19. Vectors with complex numbers.mp4 17.5 MB
- 06. Matrix rank/9. Code challenge rank of multiplied and summed matrices.mp4 17.1 MB
- 04. Introduction to matrices/1. Matrix terminology and dimensionality.mp4 17.0 MB
- 09. Matrix determinant/2. Determinant of a 2x2 matrix.mp4 16.4 MB
- 15. Quadratic form and definiteness/3. The normalized quadratic form.mp4 16.2 MB
- 13. Eigendecomposition/14. Eigenlayers of a matrix.mp4 16.1 MB
- 05. Matrix multiplications/13. Hadamard (element-wise) multiplication.mp4 15.8 MB
- 15. Quadratic form and definiteness/9. Proof A^TA is always positive (semi)definite.mp4 15.7 MB
- 03. Vectors/25. Subspaces vs. subsets.mp4 15.1 MB
- 01. Introductions/4. How best to learn from this course.mp4 14.2 MB
- 01. Introductions/1. What is linear algebra.mp4 12.0 MB
- 09. Matrix determinant/6. Find matrix values for a given determinant.mp4 11.2 MB
- 08. Solving systems of equations/2. Converting systems of equations to matrix equations.mp4 10.9 MB
- 03. Vectors/16. Vector Hadamard multiplication.mp4 10.8 MB
- 13. Eigendecomposition/16. Eigendecomposition of singular matrices.mp4 9.9 MB
- 05. Matrix multiplications/4. Matrix multiplication with a diagonal matrix.mp4 9.6 MB
- 10. Matrix inverse/10. Proof the inverse is unique.mp4 9.6 MB
- 04. Introduction to matrices/6. Matrix-scalar multiplication.mp4 8.3 MB
- 01. Introductions/2. Linear algebra applications.mp4 7.8 MB
- 13. Eigendecomposition/3. Shortcut for eigenvalues of a 2x2 matrix.mp4 7.4 MB
- 05. Matrix multiplications/23. What about matrix division.mp4 7.4 MB
- 11. Projections and orthogonalization/9. Matrix inverse via QR decomposition.mp4 3.7 MB
- 04. Introduction to matrices/9. Complex matrices.mp4 3.5 MB
- 02. Get the course materials/1. LinearAlgebra_courseMaterials.zip 2.2 MB
- 05. Matrix multiplications/2. matrixMult_4ways.png 218.8 KB
- 12. Least-squares for model-fitting in statistics/7. Least-squares application 2.vtt 35.5 KB
- 15. Quadratic form and definiteness/6. Application of the normalized quadratic form PCA.vtt 35.0 KB
- 05. Matrix multiplications/22. Code challenge The matrix asymmetry index.vtt 34.7 KB
- 14. Singular value decomposition/3. Code challenge SVD vs. eigendecomposition for square symmetric matrices.vtt 30.0 KB
- 03. Vectors/11. Dot product geometry sign and orthogonality.vtt 29.2 KB
- 06. Matrix rank/3. Computing rank theory and practice.vtt 27.0 KB
- 13. Eigendecomposition/19. Code challenge GED in small and large matrices.vtt 26.2 KB
- 14. Singular value decomposition/7. Spectral theory of matrices.vtt 25.9 KB
- 11. Projections and orthogonalization/8. Code challenge Gram-Schmidt algorithm.vtt 25.9 KB
- 13. Eigendecomposition/9. Matrix powers via diagonalization.vtt 24.6 KB
- 11. Projections and orthogonalization/7. QR decomposition.vtt 24.4 KB
- 13. Eigendecomposition/2. Finding eigenvalues.vtt 24.3 KB
- 08. Solving systems of equations/1. Systems of equations algebra and geometry.vtt 24.2 KB
- 13. Eigendecomposition/15. Code challenge reconstruct a matrix from eigenlayers.vtt 23.9 KB
- 03. Vectors/5. Dot product properties associative, distributive, commutative.vtt 23.4 KB
- 12. Least-squares for model-fitting in statistics/6. Least-squares application 1.vtt 22.9 KB
- 08. Solving systems of equations/5. Reduced row echelon form.vtt 22.6 KB
- 13. Eigendecomposition/10. Code challenge eigendecomposition of matrix differences.vtt 22.6 KB
- 05. Matrix multiplications/20. Matrix norms.vtt 22.6 KB
- 10. Matrix inverse/5. Code challenge Implement the MCA algorithm!!.vtt 22.3 KB
- 11. Projections and orthogonalization/11. Code challenge Prove and demonstrate the Sherman-Morrison inverse.vtt 21.9 KB
- 09. Matrix determinant/7. Code challenge determinant of shifted matrices.vtt 21.8 KB
- 04. Introduction to matrices/3. A zoo of matrices.vtt 21.2 KB
- 12. Least-squares for model-fitting in statistics/4. Least-squares via row-reduction.vtt 21.2 KB
- 15. Quadratic form and definiteness/7. Quadratic form of generalized eigendecomposition.vtt 21.1 KB
- 14. Singular value decomposition/1. Singular value decomposition (SVD).vtt 21.0 KB
- 03. Vectors/13. Code challenge Cauchy-Schwarz inequality.vtt 20.5 KB
- 05. Matrix multiplications/6. Matrix-vector multiplication.vtt 20.4 KB
- 11. Projections and orthogonalization/4. Code challenge decompose vector to orthogonal components.vtt 20.1 KB
- 03. Vectors/20. Hermitian transpose (a.k.a. conjugate transpose).vtt 20.0 KB
- 15. Quadratic form and definiteness/4. Code challenge Visualize the normalized quadratic form.vtt 19.7 KB
- 14. Singular value decomposition/5. Code challenge U from eigendecomposition of A^TA.vtt 19.7 KB
- 05. Matrix multiplications/8. 2D transformation matrices.vtt 19.7 KB
- 14. Singular value decomposition/8. SVD for low-rank approximations.vtt 19.5 KB
- 05. Matrix multiplications/10. Code challenge Geometric transformations via matrix multiplications.vtt 19.5 KB
- 10. Matrix inverse/6. Computing the inverse via row reduction.vtt 19.2 KB
- 05. Matrix multiplications/12. Additive and multiplicative symmetric matrices.vtt 18.9 KB
- 13. Eigendecomposition/6. Finding eigenvectors.vtt 18.7 KB
- 14. Singular value decomposition/15. Code challenge Create matrix with desired condition number.vtt 18.6 KB
- 14. Singular value decomposition/9. Convert singular values to percent variance.vtt 18.4 KB
- 04. Introduction to matrices/13. Broadcasting matrix arithmetic.vtt 18.3 KB
- 13. Eigendecomposition/8. Diagonalization.vtt 18.2 KB
- 08. Solving systems of equations/3. Gaussian elimination.vtt 18.1 KB
- 01. Introductions/3. picSVD.zip 18.0 KB
- 15. Quadratic form and definiteness/2. The quadratic form in geometry.vtt 18.0 KB
- 11. Projections and orthogonalization/2. Projections in R^N.vtt 18.0 KB
- 13. Eigendecomposition/4. Code challenge eigenvalues of diagonal and triangular matrices.vtt 17.8 KB
- 14. Singular value decomposition/16. Code challenge Why you avoid the inverse.vtt 17.7 KB
- 15. Quadratic form and definiteness/1. The quadratic form in algebra.vtt 17.6 KB
- 03. Vectors/28. Linear independence.vtt 17.6 KB
- 11. Projections and orthogonalization/10. Code challenge Inverse via QR.vtt 17.3 KB
- 06. Matrix rank/10. Making a matrix full-rank by shifting.vtt 17.3 KB
- 14. Singular value decomposition/11.14 Singular values of an orthogonal matrix.html 17.1 KB
- 06. Matrix rank/5.12 What's the maximum possible rank.html 17.0 KB
- 03. Vectors/14.4 Relative vector angles.html 17.0 KB
- 03. Vectors/24. Subspaces.vtt 17.0 KB
- 04. Introduction to matrices/4.7 Can the matrices be concatenated.html 16.9 KB
- 05. Matrix multiplications/14.10 Matrix operation equality.html 16.8 KB
- 14. Singular value decomposition/2.13 Are these two expressions equal.html 16.8 KB
- 13. Eigendecomposition/13. Eigendecomposition of symmetric matrices.vtt 16.6 KB
- 03. Vectors/10.2 Vector length in Python.html 16.6 KB
- 03. Vectors/9.1 Vector length in MATLAB.html 16.5 KB
- 06. Matrix rank/2.11 Maximum possible rank..html 16.5 KB
- 14. Singular value decomposition/12. SVD, matrix inverse, and pseudoinverse.vtt 16.5 KB
- 03. Vectors/12.3 Vector orthogonality.html 16.4 KB
- 14. Singular value decomposition/4. Relation between singular values and eigenvalues.vtt 16.4 KB
- 05. Matrix multiplications/7.9 Find the missing value!.html 16.4 KB
- 03. Vectors/22. Code challenge dot products with unit vectors.vtt 16.3 KB
- 04. Introduction to matrices/10.8 Addition, equality, and transpose.html 16.2 KB
- 14. Singular value decomposition/14. Condition number of a matrix.vtt 16.2 KB
- 03. Vectors/27.5 In the span.html 16.2 KB
- 04. Introduction to matrices/2.6 Matrix sizes and dimensionality.html 15.9 KB
- 05. Matrix multiplications/16. Multiplication of two symmetric matrices.vtt 15.9 KB
- 03. Vectors/26. Span.vtt 15.8 KB
- 07. Matrix spaces/4. Null space and left null space of a matrix.vtt 15.8 KB
- 10. Matrix inverse/4. The MCA algorithm to compute the inverse.vtt 15.8 KB
- 03. Vectors/1. Algebraic and geometric interpretations of vectors.vtt 15.8 KB
- 10. Matrix inverse/9. One-sided inverses in code.vtt 15.8 KB
- 05. Matrix multiplications/21. Code challenge conditions for self-adjoint.vtt 15.6 KB
- 08. Solving systems of equations/6. Code challenge RREF of matrices with different sizes and ranks.vtt 15.6 KB
- 09. Matrix determinant/4. Determinant of a 3x3 matrix.vtt 15.4 KB
- 15. Quadratic form and definiteness/8. Matrix definiteness, geometry, and eigenvalues.vtt 15.4 KB
- 05. Matrix multiplications/9. Code challenge Pure and impure rotation matrices.vtt 15.2 KB
- 11. Projections and orthogonalization/6. Gram-Schmidt procedure.vtt 15.2 KB
- 01. Introductions/3. An enticing start to a linear algebra course!.vtt 15.1 KB
- 06. Matrix rank/7. Code challenge scalar multiplication and rank.vtt 15.0 KB
- 12. Least-squares for model-fitting in statistics/1. Introduction to least-squares.vtt 14.9 KB
- 03. Vectors/15. Code challenge dot product sign and scalar multiplication.vtt 14.9 KB
- 07. Matrix spaces/1. Column space of a matrix.vtt 14.4 KB
- 10. Matrix inverse/1. Matrix inverse Concept and applications.vtt 14.4 KB
- 05. Matrix multiplications/15. Code challenge symmetry of combined symmetric matrices.vtt 14.3 KB
- 11. Projections and orthogonalization/3. Orthogonal and parallel vector components.vtt 14.1 KB
- 13. Eigendecomposition/12. Eigenvectors of repeated eigenvalues.vtt 14.1 KB
- 06. Matrix rank/11. Code challenge is this vector in the span of this set.vtt 14.0 KB
- 13. Eigendecomposition/1. What are eigenvalues and eigenvectors.vtt 14.0 KB
- 10. Matrix inverse/11. Pseudo-inverse, part 1.vtt 14.0 KB
- 13. Eigendecomposition/18. Generalized eigendecomposition.vtt 14.0 KB
- 05. Matrix multiplications/18. Code challenge Fourier transform via matrix multiplication!.vtt 13.9 KB
- 05. Matrix multiplications/19. Frobenius dot product.vtt 13.9 KB
- 09. Matrix determinant/8. Code challenge determinant of matrix product.vtt 13.7 KB
- 14. Singular value decomposition/10. Code challenge When is UV^T valid, what is its norm, and is it orthogonal.vtt 13.6 KB
- 13. Eigendecomposition/17. Code challenge trace and determinant, eigenvalues sum and product.vtt 13.3 KB
- 09. Matrix determinant/3. Code challenge determinant of small and large singular matrices.vtt 13.3 KB
- 07. Matrix spaces/7. Example of the four subspaces.vtt 13.3 KB
- 03. Vectors/29. Basis.vtt 13.2 KB
- 05. Matrix multiplications/2. Four ways to think about matrix multiplication.vtt 13.1 KB
- 11. Projections and orthogonalization/5. Orthogonal matrices.vtt 13.1 KB
- 13. Eigendecomposition/5. Code challenge eigenvalues of random matrices.vtt 13.1 KB
- 04. Introduction to matrices/8. Transpose.vtt 12.9 KB
- 10. Matrix inverse/7. Code challenge inverse of a diagonal matrix.vtt 12.7 KB
- 06. Matrix rank/4. Rank of added and multiplied matrices.vtt 12.6 KB
- 03. Vectors/17. Outer product.vtt 12.6 KB
- 03. Vectors/4. Vector-vector multiplication the dot product.vtt 12.6 KB
- 05. Matrix multiplications/1. Introduction to standard matrix multiplication.vtt 12.4 KB
- 05. Matrix multiplications/3. Code challenge matrix multiplication by layering.vtt 12.3 KB
- 06. Matrix rank/6. Code challenge reduced-rank matrix via multiplication.vtt 12.3 KB
- 06. Matrix rank/1. Rank concepts, terms, and applications.vtt 12.2 KB
- 04. Introduction to matrices/12. Code challenge linearity of trace.vtt 12.1 KB
- 07. Matrix spaces/5. Columnleft-null and rownull spaces are orthogonal.vtt 12.0 KB
- 12. Least-squares for model-fitting in statistics/8. Code challenge Least-squares via QR decomposition.vtt 11.9 KB
- 06. Matrix rank/8. Rank of A^TA and AA^T.vtt 11.7 KB
- 11. Projections and orthogonalization/1. Projections in R^2.vtt 11.5 KB
- 03. Vectors/18. Vector cross product.vtt 11.1 KB
- 03. Vectors/3. Vector-scalar multiplication.vtt 11.1 KB
- 03. Vectors/7. Code challenge is the dot product commutative.vtt 11.1 KB
- 04. Introduction to matrices/11. Diagonal and trace.vtt 11.0 KB
- 02. Get the course materials/1. How to download and use course materials.vtt 10.9 KB
- 13. Eigendecomposition/7. Eigendecomposition by hand two examples.vtt 10.9 KB
- 01. Introductions/5. Maximizing your Udemy experience.vtt 10.8 KB
- 10. Matrix inverse/8. Left inverse and right inverse.vtt 10.8 KB
- 12. Least-squares for model-fitting in statistics/2. Least-squares via left inverse.vtt 10.7 KB
- 08. Solving systems of equations/7. Matrix spaces after row reduction.vtt 10.6 KB
- 03. Vectors/6. Code challenge dot products with matrix columns.vtt 10.4 KB
- 05. Matrix multiplications/5. Order-of-operations on matrices.vtt 10.4 KB
- 04. Introduction to matrices/5. Matrix addition and subtraction.vtt 10.2 KB
- 03. Vectors/2. Vector addition and subtraction.vtt 10.2 KB
- 12. Least-squares for model-fitting in statistics/3. Least-squares via orthogonal projection.vtt 9.9 KB
- 14. Singular value decomposition/13. SVD, (pseudo)inverse, and left-inverse.vtt 9.8 KB
- 04. Introduction to matrices/7. Code challenge is matrix-scalar multiplication a linear operation.vtt 9.2 KB
- 03. Vectors/21. Interpreting and creating unit vectors.vtt 9.2 KB
- 03. Vectors/19. Vectors with complex numbers.vtt 9.1 KB
- 01. Introductions/1. What is linear algebra.vtt 9.1 KB
- 04. Introduction to matrices/1. Matrix terminology and dimensionality.vtt 9.1 KB
- 07. Matrix spaces/6. Dimensions of columnrownull spaces.vtt 9.1 KB
- 13. Eigendecomposition/11. Eigenvectors of distinct eigenvalues.vtt 9.0 KB
- 10. Matrix inverse/3. Inverse of a 2x2 matrix.vtt 8.9 KB
- 15. Quadratic form and definiteness/10. Proof Eigenvalues and matrix definiteness.vtt 8.9 KB
- 03. Vectors/23. Dimensions and fields in linear algebra.vtt 8.8 KB
- 08. Solving systems of equations/4. Echelon form and pivots.vtt 8.5 KB
- 03. Vectors/8. Vector length.vtt 8.4 KB
- 07. Matrix spaces/2. Column space, visualized in code.vtt 8.3 KB
- 07. Matrix spaces/8. More on Ax=b and Ax=0.vtt 8.2 KB
- 13. Eigendecomposition/14. Eigenlayers of a matrix.vtt 8.2 KB
- 10. Matrix inverse/2. Computing the inverse in code.vtt 8.1 KB
- 09. Matrix determinant/2. Determinant of a 2x2 matrix.vtt 8.1 KB
- 14. Singular value decomposition/6. SVD and the four subspaces.vtt 8.0 KB
- 09. Matrix determinant/5. Code challenge large matrices with row exchanges.vtt 7.8 KB
- 05. Matrix multiplications/11. Additive and multiplicative matrix identities.vtt 7.7 KB
- 05. Matrix multiplications/17. Code challenge standard and Hadamard multiplication for diagonal matrices.vtt 7.7 KB
- 15. Quadratic form and definiteness/9. Proof A^TA is always positive (semi)definite.vtt 7.6 KB
- 12. Least-squares for model-fitting in statistics/5. Model-predicted values and residuals.vtt 7.6 KB
- 06. Matrix rank/9. Code challenge rank of multiplied and summed matrices.vtt 7.6 KB
- 15. Quadratic form and definiteness/5. Eigenvectors and the quadratic form surface.vtt 7.5 KB
- 15. Quadratic form and definiteness/3. The normalized quadratic form.vtt 7.3 KB
- 09. Matrix determinant/1. Determinant concept and applications.vtt 7.2 KB
- 10. Matrix inverse/12. Code challenge pseudoinverse of invertible matrices.vtt 7.0 KB
- 11. Projections and orthogonalization/12. Code challenge A^TA = R^TR.vtt 7.0 KB
- 01. Introductions/2. Linear algebra applications.vtt 6.8 KB
- 03. Vectors/25. Subspaces vs. subsets.vtt 6.2 KB
- 05. Matrix multiplications/13. Hadamard (element-wise) multiplication.vtt 6.0 KB
- 09. Matrix determinant/6. Find matrix values for a given determinant.vtt 5.8 KB
- 01. Introductions/4. How best to learn from this course.vtt 5.2 KB
- 08. Solving systems of equations/2. Converting systems of equations to matrix equations.vtt 5.1 KB
- 13. Eigendecomposition/16. Eigendecomposition of singular matrices.vtt 5.0 KB
- 05. Matrix multiplications/23. What about matrix division.vtt 4.8 KB
- 07. Matrix spaces/3. Row space of a matrix.vtt 4.8 KB
- 16. Bonus section/1. Bonus lecture.html 4.7 KB
- 03. Vectors/16. Vector Hadamard multiplication.vtt 4.6 KB
- 05. Matrix multiplications/4. Matrix multiplication with a diagonal matrix.vtt 4.3 KB
- 06. Matrix rank/12. Course tangent self-accountability in online learning.vtt 3.6 KB
- 10. Matrix inverse/10. Proof the inverse is unique.vtt 3.5 KB
- 13. Eigendecomposition/3. Shortcut for eigenvalues of a 2x2 matrix.vtt 3.0 KB
- 04. Introduction to matrices/6. Matrix-scalar multiplication.vtt 3.0 KB
- 04. Introduction to matrices/9. Complex matrices.vtt 2.2 KB
- 11. Projections and orthogonalization/9. Matrix inverse via QR decomposition.vtt 1.9 KB
- 10. Matrix inverse/13. Why should you avoid the inverse.html 424 bytes
- 02. Get the course materials/1. Link-to-github-site.txt 42 bytes
Download Torrent
Related Resources
Copyright Infringement
If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.