[CourseClub.NET] Coursera - Applied Machine Learning in Python
    
    File List
    
        
            
                
                    - 003.Module 3  Evaluation/019. Model Evaluation & Selection.mp4  46.1 MB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.mp4  44.6 MB
- 004.Module 4  Supervised Machine Learning - Part 2/029. Neural Networks.mp4  41.5 MB
- 002.Module 2  Supervised Machine Learning/012. Linear Regression  Ridge, Lasso, and Polynomial Regression.mp4  39.9 MB
- 002.Module 2  Supervised Machine Learning/016. Kernelized Support Vector Machines.mp4  39.1 MB
- 002.Module 2  Supervised Machine Learning/007. Introduction to Supervised Machine Learning.mp4  37.9 MB
- 002.Module 2  Supervised Machine Learning/018. Decision Trees.mp4  37.8 MB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.mp4  36.2 MB
- 003.Module 3  Evaluation/025. Model Selection  Optimizing Classifiers for Different Evaluation Metrics.mp4  34.5 MB
- 004.Module 4  Supervised Machine Learning - Part 2/031. Data Leakage.mp4  32.9 MB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.mp4  32.2 MB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.mp4  31.7 MB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.mp4  31.1 MB
- 002.Module 2  Supervised Machine Learning/011. Linear Regression  Least-Squares.mp4  30.1 MB
- 005.Optional  Unsupervised Machine Learning/034. Clustering.mp4  27.2 MB
- 004.Module 4  Supervised Machine Learning - Part 2/027. Random Forests.mp4  26.4 MB
- 002.Module 2  Supervised Machine Learning/014. Linear Classifiers  Support Vector Machines.mp4  22.7 MB
- 002.Module 2  Supervised Machine Learning/010. K-Nearest Neighbors  Classification and Regression.mp4  22.5 MB
- 004.Module 4  Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.mp4  21.4 MB
- 003.Module 3  Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.mp4  20.8 MB
- 002.Module 2  Supervised Machine Learning/013. Logistic Regression.mp4  20.3 MB
- 002.Module 2  Supervised Machine Learning/017. Cross-Validation.mp4  20.0 MB
- 003.Module 3  Evaluation/023. Multi-Class Evaluation.mp4  19.8 MB
- 002.Module 2  Supervised Machine Learning/008. Overfitting and Underfitting.mp4  19.5 MB
- 004.Module 4  Supervised Machine Learning - Part 2/030. Deep Learning (Optional).mp4  17.5 MB
- 003.Module 3  Evaluation/024. Regression Evaluation.mp4  17.0 MB
- 005.Optional  Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.mp4  16.1 MB
- 002.Module 2  Supervised Machine Learning/015. Multi-Class Classification.mp4  15.4 MB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.mp4  12.9 MB
- 003.Module 3  Evaluation/021. Classifier Decision Functions.mp4  12.7 MB
- 004.Module 4  Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.mp4  11.8 MB
- 002.Module 2  Supervised Machine Learning/009. Supervised Learning  Datasets.mp4  11.2 MB
- 005.Optional  Unsupervised Machine Learning/032. Introduction.mp4  10.7 MB
- 006.Conclusion/035. Conclusion.mp4  9.9 MB
- 003.Module 3  Evaluation/022. Precision-recall and ROC curves.mp4  9.2 MB
- 003.Module 3  Evaluation/019. Model Evaluation & Selection.srt  30.1 KB
- 002.Module 2  Supervised Machine Learning/018. Decision Trees.srt  28.4 KB
- 004.Module 4  Supervised Machine Learning - Part 2/029. Neural Networks.srt  27.9 KB
- 002.Module 2  Supervised Machine Learning/012. Linear Regression  Ridge, Lasso, and Polynomial Regression.srt  27.2 KB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.srt  26.2 KB
- 002.Module 2  Supervised Machine Learning/016. Kernelized Support Vector Machines.srt  25.6 KB
- 002.Module 2  Supervised Machine Learning/007. Introduction to Supervised Machine Learning.srt  22.1 KB
- 002.Module 2  Supervised Machine Learning/011. Linear Regression  Least-Squares.srt  21.3 KB
- 005.Optional  Unsupervised Machine Learning/034. Clustering.srt  19.9 KB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.srt  18.8 KB
- 003.Module 3  Evaluation/025. Model Selection  Optimizing Classifiers for Different Evaluation Metrics.srt  18.1 KB
- 002.Module 2  Supervised Machine Learning/013. Logistic Regression.srt  17.1 KB
- 002.Module 2  Supervised Machine Learning/010. K-Nearest Neighbors  Classification and Regression.srt  17.1 KB
- 004.Module 4  Supervised Machine Learning - Part 2/027. Random Forests.srt  17.1 KB
- 004.Module 4  Supervised Machine Learning - Part 2/031. Data Leakage.srt  16.7 KB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.srt  16.1 KB
- 003.Module 3  Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.srt  15.8 KB
- 002.Module 2  Supervised Machine Learning/008. Overfitting and Underfitting.srt  15.8 KB
- 002.Module 2  Supervised Machine Learning/014. Linear Classifiers  Support Vector Machines.srt  15.5 KB
- 003.Module 3  Evaluation/023. Multi-Class Evaluation.srt  15.2 KB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.srt  14.8 KB
- 005.Optional  Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.srt  13.5 KB
- 002.Module 2  Supervised Machine Learning/017. Cross-Validation.srt  13.0 KB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.srt  12.1 KB
- 004.Module 4  Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.srt  11.2 KB
- 004.Module 4  Supervised Machine Learning - Part 2/030. Deep Learning (Optional).srt  10.3 KB
- 003.Module 3  Evaluation/021. Classifier Decision Functions.srt  9.0 KB
- 004.Module 4  Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.srt  8.4 KB
- 002.Module 2  Supervised Machine Learning/015. Multi-Class Classification.srt  8.3 KB
- 003.Module 3  Evaluation/024. Regression Evaluation.srt  7.8 KB
- 003.Module 3  Evaluation/022. Precision-recall and ROC curves.srt  7.5 KB
- 002.Module 2  Supervised Machine Learning/009. Supervised Learning  Datasets.srt  6.7 KB
- 005.Optional  Unsupervised Machine Learning/032. Introduction.srt  6.5 KB
- 001.Module 1  Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.srt  6.1 KB
- 006.Conclusion/035. Conclusion.srt  3.9 KB
- [CourseClub.NET].url  123 bytes
- [FreeCourseSite.Com].url  53 bytes
- [DesireCourse.Com].url  51 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.