GetFreeCourses.Co-Udemy-Time Series Analysis, Forecasting, and Machine Learning
    
    File List
    
        
            
                
                    - 5. ARIMA/5. ARIMA in Code.mp4  121.6 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4  108.2 MB
- 5. ARIMA/15. Auto ARIMA in Code (Stocks).mp4  105.2 MB
- 5. ARIMA/14. Auto ARIMA in Code.mp4  103.2 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.mp4  96.8 MB
- 12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).mp4  91.1 MB
- 13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.mp4  91.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.mp4  86.5 MB
- 7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).mp4  86.2 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).mp4  80.0 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4  79.6 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.mp4  78.3 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.mp4  74.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.mp4  70.9 MB
- 4. Exponential Smoothing and ETS Methods/8. SES Code.mp4  69.5 MB
- 15. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.mp4  69.5 MB
- 7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.mp4  69.0 MB
- 3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.mp4  68.1 MB
- 13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.mp4  67.9 MB
- 13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.mp4  67.8 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.mp4  67.7 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.mp4  67.5 MB
- 5. ARIMA/17. Auto ARIMA in Code (Sales Data).mp4  65.4 MB
- 7. Machine Learning Methods/8. Extrapolation and Stock Prices.mp4  64.7 MB
- 13. VIP Facebook Prophet/3. Prophet Code Preparation.mp4  63.9 MB
- 12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).mp4  63.3 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.mp4  62.3 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).mp4  61.6 MB
- 5. ARIMA/7. Stationarity in Code.mp4  61.5 MB
- 4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.mp4  60.3 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.mp4  59.2 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.mp4  57.5 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).mp4  55.5 MB
- 13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.mp4  55.2 MB
- 5. ARIMA/6. Stationarity.mp4  55.2 MB
- 13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.mp4  54.7 MB
- 12. VIP AWS Forecast/6. Code pt 3 (Building your Model).mp4  54.5 MB
- 4. Exponential Smoothing and ETS Methods/4. SMA Code.mp4  54.1 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.mp4  54.0 MB
- 5. ARIMA/2. Autoregressive Models - AR(p).mp4  52.5 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).mp4  52.3 MB
- 11. VIP GARCH/9. GARCH Code (pt 2).mp4  51.9 MB
- 2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).mp4  50.9 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).mp4  50.8 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).mp4  50.2 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.mp4  50.1 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.mp4  50.0 MB
- 12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).mp4  49.9 MB
- 4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).mp4  49.8 MB
- 7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).mp4  49.4 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).mp4  49.3 MB
- 15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).mp4  49.2 MB
- 12. VIP AWS Forecast/2. Data Model.mp4  49.0 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.mp4  48.8 MB
- 4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).mp4  47.6 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.mp4  46.4 MB
- 11. VIP GARCH/13. A Deep Learning Approach to GARCH.mp4  46.1 MB
- 5. ARIMA/13. Model Selection, AIC and BIC.mp4  45.9 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).mp4  45.4 MB
- 3. Time Series Basics/9. Financial Time Series Primer.mp4  44.9 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.mp4  44.8 MB
- 4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.mp4  44.3 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.mp4  44.1 MB
- 11. VIP GARCH/10. GARCH Code (pt 3).mp4  44.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.mp4  43.9 MB
- 3. Time Series Basics/8. Forecasting Metrics.mp4  43.7 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.mp4  43.6 MB
- 14. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4  43.6 MB
- 12. VIP AWS Forecast/1. AWS Forecast Section Introduction.mp4  43.5 MB
- 7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.mp4  43.5 MB
- 5. ARIMA/16. ACF and PACF for Stock Returns.mp4  43.5 MB
- 7. Machine Learning Methods/12. Application Sales Data.mp4  42.2 MB
- 13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.mp4  41.9 MB
- 3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.mp4  41.5 MB
- 5. ARIMA/4. ARIMA.mp4  41.4 MB
- 5. ARIMA/10. ACF and PACF in Code (pt 1).mp4  41.3 MB
- 11. VIP GARCH/11. GARCH Code (pt 4).mp4  41.3 MB
- 13. VIP Facebook Prophet/2. How does Prophet work.mp4  40.8 MB
- 2. Getting Set Up/1. Where to Get the Code.mp4  40.5 MB
- 4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.mp4  40.5 MB
- 4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.mp4  40.2 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN  Elman Unit (pt 2).mp4  40.0 MB
- 11. VIP GARCH/7. GARCH Code Preparation (pt 2).mp4  40.0 MB
- 5. ARIMA/12. Auto ARIMA and SARIMAX.mp4  39.5 MB
- 4. Exponential Smoothing and ETS Methods/6. EWMA Code.mp4  39.4 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4  39.0 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN  Elman Unit (pt 1).mp4  38.7 MB
- 13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.mp4  38.0 MB
- 5. ARIMA/18. How to Forecast with ARIMA.mp4  37.9 MB
- 11. VIP GARCH/6. GARCH Code Preparation (pt 1).mp4  37.9 MB
- 17. Appendix  FAQ Finale/2. BONUS Lecture.mp4  37.9 MB
- 7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.mp4  37.4 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).mp4  37.2 MB
- 5. ARIMA/8. ACF (Autocorrelation Function).mp4  37.0 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.mp4  36.1 MB
- 4. Exponential Smoothing and ETS Methods/5. EWMA Theory.mp4  35.8 MB
- 4. Exponential Smoothing and ETS Methods/7. SES Theory.mp4  35.6 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.mp4  34.2 MB
- 5. ARIMA/11. ACF and PACF in Code (pt 2).mp4  33.9 MB
- 3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.mp4  33.3 MB
- 11. VIP GARCH/8. GARCH Code (pt 1).mp4  33.3 MB
- 4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).mp4  33.2 MB
- 3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.mp4  32.6 MB
- 7. Machine Learning Methods/3. Autoregressive Machine Learning Models.mp4  32.4 MB
- 3. Time Series Basics/2. What is a Time Series.mp4  32.3 MB
- 7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.mp4  32.0 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.mp4  32.0 MB
- 11. VIP GARCH/12. GARCH Code (pt 5).mp4  31.9 MB
- 7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.mp4  31.7 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.mp4  31.3 MB
- 11. VIP GARCH/14. GARCH Section Summary.mp4  30.8 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.mp4  30.7 MB
- 1. Welcome/1. Introduction and Outline.mp4  30.7 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).mp4  30.5 MB
- 3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.mp4  30.1 MB
- 3. Time Series Basics/4. Why Do We Care About Shapes.mp4  29.5 MB
- 4. Exponential Smoothing and ETS Methods/15. Application Sales Data.mp4  29.4 MB
- 14. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.mp4  27.9 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.mp4  27.5 MB
- 11. VIP GARCH/5. GARCH Theory.mp4  27.5 MB
- 11. VIP GARCH/3. ARCH Theory (pt 2).mp4  27.2 MB
- 3. Time Series Basics/15. Suggestion Box.mp4  27.2 MB
- 7. Machine Learning Methods/14. Application Predicting Stock Movements.mp4  26.3 MB
- 12. VIP AWS Forecast/9. AWS Forecast Section Summary.mp4  25.5 MB
- 5. ARIMA/9. PACF (Partial Autocorrelation Funtion).mp4  25.1 MB
- 15. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).mp4  24.6 MB
- 4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.mp4  23.9 MB
- 12. VIP AWS Forecast/3. Creating an IAM Role.mp4  23.8 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).mp4  23.7 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.mp4  23.6 MB
- 3. Time Series Basics/5. Types of Tasks.mp4  23.6 MB
- 1. Welcome/2. Warmup (Optional).mp4  23.2 MB
- 5. ARIMA/1. ARIMA Section Introduction.mp4  23.0 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.mp4  22.4 MB
- 7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.mp4  21.8 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.mp4  20.9 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.mp4  20.5 MB
- 11. VIP GARCH/4. ARCH Theory (pt 3).mp4  19.5 MB
- 11. VIP GARCH/2. ARCH Theory (pt 1).mp4  19.5 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.mp4  19.4 MB
- 4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.mp4  19.4 MB
- 4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.mp4  19.1 MB
- 4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).mp4  19.1 MB
- 7. Machine Learning Methods/10. Forecasting with Differencing.mp4  19.0 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.mp4  18.7 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.mp4  18.6 MB
- 3. Time Series Basics/10. Price Simulations in Code.mp4  18.3 MB
- 11. VIP GARCH/1. GARCH Section Introduction.mp4  18.2 MB
- 7. Machine Learning Methods/1. Machine Learning Section Introduction.mp4  17.5 MB
- 3. Time Series Basics/1. Time Series Basics Section Introduction.mp4  17.5 MB
- 17. Appendix  FAQ Finale/1. What is the Appendix.mp4  16.4 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.mp4  15.9 MB
- 10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.mp4  15.5 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.mp4  15.4 MB
- 4. Exponential Smoothing and ETS Methods/3. SMA Theory.mp4  15.2 MB
- 13. VIP Facebook Prophet/1. Prophet Section Introduction.mp4  14.5 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.mp4  14.3 MB
- 12. VIP AWS Forecast/8. AWS Forecast Exercise.mp4  13.8 MB
- 4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.mp4  13.6 MB
- 3. Time Series Basics/3. Modeling vs. Predicting.mp4  13.5 MB
- 13. VIP Facebook Prophet/11. Prophet Section Summary.mp4  13.5 MB
- 5. ARIMA/20. ARIMA Section Summary.mp4  12.7 MB
- 16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).mp4  12.6 MB
- 6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.mp4  12.4 MB
- 3. Time Series Basics/14. Time Series Basics Section Summary.mp4  12.1 MB
- 4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.mp4  11.6 MB
- 8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.mp4  10.9 MB
- 5. ARIMA/3. Moving Average Models - MA(q).mp4  10.9 MB
- 7. Machine Learning Methods/15. Machine Learning Section Summary.mp4  10.4 MB
- 5. ARIMA/19. Forecasting Out-Of-Sample.mp4  6.7 MB
- 9. Deep Learning Convolutional Neural Networks (CNN)/7. CNN Architecture.srt  32.0 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt  31.9 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt  23.5 KB
- 5. ARIMA/5. ARIMA in Code.srt  22.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/5. Activation Functions.srt  22.9 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/7. GRU and LSTM (pt 1).srt  22.8 KB
- 15. Extra Help With Python Coding for Beginners FAQ/1. How to Code by Yourself (part 1).srt  22.6 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/5. Convolution on Color Images.srt  20.8 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/2. What is Convolution.srt  20.7 KB
- 14. Setting Up Your Environment FAQ/1. Anaconda Environment Setup.srt  20.3 KB
- 3. Time Series Basics/11. Random Walks and the Random Walk Hypothesis.srt  19.4 KB
- 7. Machine Learning Methods/2. Supervised Machine Learning Classification and Regression.srt  18.9 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/2. VAR and VARMA Theory.srt  17.7 KB
- 5. ARIMA/6. Stationarity.srt  17.5 KB
- 5. ARIMA/15. Auto ARIMA in Code (Stocks).srt  17.1 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt  16.8 KB
- 5. ARIMA/2. Autoregressive Models - AR(p).srt  16.7 KB
- 12. VIP AWS Forecast/5. Code pt 2 (Uploading the data to S3).srt  16.4 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/7. ANN Code Preparation.srt  16.3 KB
- 13. VIP Facebook Prophet/3. Prophet Code Preparation.srt  16.2 KB
- 5. ARIMA/14. Auto ARIMA in Code.srt  15.7 KB
- 3. Time Series Basics/8. Forecasting Metrics.srt  15.2 KB
- 11. VIP GARCH/13. A Deep Learning Approach to GARCH.srt  15.0 KB
- 3. Time Series Basics/9. Financial Time Series Primer.srt  15.0 KB
- 4. Exponential Smoothing and ETS Methods/11. Holt-Winters (Theory).srt  15.0 KB
- 7. Machine Learning Methods/9. Machine Learning for Time Series Forecasting in Code (pt 1).srt  15.0 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/8. GRU and LSTM (pt 2).srt  14.8 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/10. Converting Between Models (Optional).srt  14.7 KB
- 16. Effective Learning Strategies for Machine Learning FAQ/1. How to Succeed in this Course (Long Version).srt  14.6 KB
- 4. Exponential Smoothing and ETS Methods/5. EWMA Theory.srt  14.6 KB
- 4. Exponential Smoothing and ETS Methods/8. SES Code.srt  14.5 KB
- 4. Exponential Smoothing and ETS Methods/20. (Optional) More About State-Space Models.srt  14.3 KB
- 14. Setting Up Your Environment FAQ/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt  14.2 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/16. How Does a Neural Network Learn.srt  14.2 KB
- 15. Extra Help With Python Coding for Beginners FAQ/3. Proof that using Jupyter Notebook is the same as not using it.srt  14.0 KB
- 13. VIP Facebook Prophet/10. (The Dangers of) Prophet for Stock Price Prediction.srt  14.0 KB
- 4. Exponential Smoothing and ETS Methods/7. SES Theory.srt  13.9 KB
- 5. ARIMA/4. ARIMA.srt  13.8 KB
- 5. ARIMA/13. Model Selection, AIC and BIC.srt  13.5 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/13. Human Activity Recognition Multi-Input ANN.srt  13.4 KB
- 15. Extra Help With Python Coding for Beginners FAQ/2. How to Code by Yourself (part 2).srt  13.2 KB
- 7. Machine Learning Methods/6. Machine Learning Algorithms Support Vector Machines.srt  13.1 KB
- 5. ARIMA/8. ACF (Autocorrelation Function).srt  13.0 KB
- 2. Getting Set Up/2. How to use Github & Extra Coding Tips (Optional).srt  12.9 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/3. Simple RNN  Elman Unit (pt 2).srt  12.9 KB
- 12. VIP AWS Forecast/4. Code pt 1 (Getting and Transforming the Data).srt  12.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/2. The Neuron.srt  12.7 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/3. Forward Propagation.srt  12.5 KB
- 4. Exponential Smoothing and ETS Methods/13. Walk-Forward Validation.srt  12.3 KB
- 5. ARIMA/12. Auto ARIMA and SARIMAX.srt  12.3 KB
- 12. VIP AWS Forecast/2. Data Model.srt  12.2 KB
- 5. ARIMA/18. How to Forecast with ARIMA.srt  12.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/4. The Geometrical Picture.srt  11.7 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/2. Simple RNN  Elman Unit (pt 1).srt  11.5 KB
- 13. VIP Facebook Prophet/6. Prophet in Code Holidays and Exogenous Regressors.srt  11.3 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/5. RNN Code Preparation.srt  11.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/6. Multiclass Classification.srt  11.1 KB
- 13. VIP Facebook Prophet/2. How does Prophet work.srt  10.8 KB
- 5. ARIMA/7. Stationarity in Code.srt  10.8 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/8. Feedforward ANN for Time Series Forecasting Code.srt  10.7 KB
- 12. VIP AWS Forecast/1. AWS Forecast Section Introduction.srt  10.6 KB
- 2. Getting Set Up/1. Where to Get the Code.srt  10.5 KB
- 11. VIP GARCH/6. GARCH Code Preparation (pt 1).srt  10.5 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/7. VARMA Econometrics Code (pt 2).srt  10.5 KB
- 11. VIP GARCH/7. GARCH Code Preparation (pt 2).srt  10.4 KB
- 5. ARIMA/17. Auto ARIMA in Code (Sales Data).srt  10.2 KB
- 7. Machine Learning Methods/3. Autoregressive Machine Learning Models.srt  10.1 KB
- 4. Exponential Smoothing and ETS Methods/9. Holt's Linear Trend Model (Theory).srt  10.1 KB
- 4. Exponential Smoothing and ETS Methods/14. Walk-Forward Validation in Code.srt  10.0 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/6. RNNs Understanding by Implementing (Paying Attention to Shapes).srt  10.0 KB
- 7. Machine Learning Methods/8. Extrapolation and Stock Prices.srt  9.8 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/6. VARMA Econometrics Code (pt 1).srt  9.7 KB
- 4. Exponential Smoothing and ETS Methods/4. SMA Code.srt  9.6 KB
- 13. VIP Facebook Prophet/4. Prophet in Code Data Preparation.srt  9.6 KB
- 13. VIP Facebook Prophet/9. Prophet Multiplicative Seasonality, Outliers, Non-Daily Data.srt  9.6 KB
- 11. VIP GARCH/5. GARCH Theory.srt  9.6 KB
- 11. VIP GARCH/3. ARCH Theory (pt 2).srt  9.6 KB
- 4. Exponential Smoothing and ETS Methods/6. EWMA Code.srt  9.6 KB
- 4. Exponential Smoothing and ETS Methods/12. Holt-Winters (Code).srt  9.6 KB
- 5. ARIMA/10. ACF and PACF in Code (pt 1).srt  9.3 KB
- 13. VIP Facebook Prophet/5. Prophet in Code Fit, Forecast, Plot.srt  9.3 KB
- 12. VIP AWS Forecast/6. Code pt 3 (Building your Model).srt  9.2 KB
- 3. Time Series Basics/12. The Naive Forecast and the Importance of Baselines.srt  9.2 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/9. LSTMs for Time Series Forecasting in Code.srt  9.2 KB
- 7. Machine Learning Methods/7. Machine Learning Algorithms Random Forest.srt  9.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/9. Feedforward ANN for Stock Return and Price Predictions Code.srt  9.0 KB
- 7. Machine Learning Methods/5. Machine Learning Algorithms Logistic Regression.srt  9.0 KB
- 3. Time Series Basics/5. Types of Tasks.srt  8.9 KB
- 11. VIP GARCH/14. GARCH Section Summary.srt  8.7 KB
- 11. VIP GARCH/9. GARCH Code (pt 2).srt  8.7 KB
- 12. VIP AWS Forecast/7. Code pt 4 (Generating and Evaluating the Forecast).srt  8.6 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/12. Human Activity Recognition Data Exploration.srt  8.6 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/4. What is Convolution (Weight Sharing).srt  8.5 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/3. VARMA Code (pt 1).srt  8.5 KB
- 3. Time Series Basics/13. Naive Forecast and Forecasting Metrics in Code.srt  8.3 KB
- 3. Time Series Basics/6. Power, Log, and Box-Cox Transformations.srt  8.1 KB
- 5. ARIMA/11. ACF and PACF in Code (pt 2).srt  8.0 KB
- 5. ARIMA/9. PACF (Partial Autocorrelation Funtion).srt  8.0 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/8. CNN Code Preparation.srt  7.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/11. Human Activity Recognition Code Preparation.srt  7.9 KB
- 17. Appendix  FAQ Finale/2. BONUS Lecture.srt  7.9 KB
- 3. Time Series Basics/4. Why Do We Care About Shapes.srt  7.7 KB
- 1. Welcome/1. Introduction and Outline.srt  7.5 KB
- 5. ARIMA/16. ACF and PACF for Stock Returns.srt  7.5 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/5. VARMA Code (pt 3).srt  7.4 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/10. Human Activity Recognition Dataset.srt  7.3 KB
- 4. Exponential Smoothing and ETS Methods/2. Exponential Smoothing Intuition for Beginners.srt  7.2 KB
- 5. ARIMA/1. ARIMA Section Introduction.srt  7.1 KB
- 11. VIP GARCH/10. GARCH Code (pt 3).srt  7.1 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/4. VARMA Code (pt 2).srt  7.1 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/3. What is Convolution (Pattern-Matching).srt  6.9 KB
- 3. Time Series Basics/7. Power, Log, and Box-Cox Transformations in Code.srt  6.8 KB
- 12. VIP AWS Forecast/9. AWS Forecast Section Summary.srt  6.8 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/9. CNN for Time Series Forecasting in Code.srt  6.8 KB
- 7. Machine Learning Methods/11. Machine Learning for Time Series Forecasting in Code (pt 2).srt  6.7 KB
- 11. VIP GARCH/4. ARCH Theory (pt 3).srt  6.6 KB
- 7. Machine Learning Methods/4. Machine Learning Algorithms Linear Regression.srt  6.4 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/10. CNN for Human Activity Recognition.srt  6.4 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/6. Convolution for Time Series and ARIMA.srt  6.4 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/1. RNN Section Introduction.srt  6.4 KB
- 3. Time Series Basics/2. What is a Time Series.srt  6.3 KB
- 11. VIP GARCH/2. ARCH Theory (pt 1).srt  6.3 KB
- 4. Exponential Smoothing and ETS Methods/16. Application Stock Predictions.srt  6.3 KB
- 11. VIP GARCH/8. GARCH Code (pt 1).srt  6.1 KB
- 13. VIP Facebook Prophet/7. Prophet in Code Cross-Validation.srt  6.1 KB
- 1. Welcome/2. Warmup (Optional).srt  6.1 KB
- 3. Time Series Basics/1. Time Series Basics Section Introduction.srt  5.9 KB
- 11. VIP GARCH/11. GARCH Code (pt 4).srt  5.9 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/14. Human Activity Recognition Feature-Based Model.srt  5.5 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/10. LSTMs for Time Series Classification in Code.srt  5.4 KB
- 4. Exponential Smoothing and ETS Methods/19. Exponential Smoothing Section Summary.srt  5.4 KB
- 7. Machine Learning Methods/1. Machine Learning Section Introduction.srt  5.3 KB
- 7. Machine Learning Methods/12. Application Sales Data.srt  5.3 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/8. Granger Causality.srt  5.3 KB
- 7. Machine Learning Methods/10. Forecasting with Differencing.srt  5.3 KB
- 4. Exponential Smoothing and ETS Methods/15. Application Sales Data.srt  5.2 KB
- 11. VIP GARCH/1. GARCH Section Introduction.srt  5.2 KB
- 4. Exponential Smoothing and ETS Methods/3. SMA Theory.srt  4.8 KB
- 7. Machine Learning Methods/13. Application Predicting Stock Prices and Returns.srt  4.8 KB
- 12. VIP AWS Forecast/3. Creating an IAM Role.srt  4.8 KB
- 3. Time Series Basics/15. Suggestion Box.srt  4.7 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/11. Vector Autoregression Section Summary.srt  4.7 KB
- 5. ARIMA/20. ARIMA Section Summary.srt  4.6 KB
- 13. VIP Facebook Prophet/11. Prophet Section Summary.srt  4.5 KB
- 7. Machine Learning Methods/14. Application Predicting Stock Movements.srt  4.5 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/1. Artificial Neural Networks Section Introduction.srt  4.4 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/4. Aside State Space Models vs. RNNs.srt  4.4 KB
- 3. Time Series Basics/14. Time Series Basics Section Summary.srt  4.3 KB
- 5. ARIMA/3. Moving Average Models - MA(q).srt  4.2 KB
- 13. VIP Facebook Prophet/8. Prophet in Code Changepoint Detection.srt  4.2 KB
- 4. Exponential Smoothing and ETS Methods/17. SMA Application COVID-19 Counting.srt  4.2 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/11. The Unreasonable Ineffectiveness of Recurrent Neural Networks.srt  4.2 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/11. CNN Section Summary.srt  4.2 KB
- 13. VIP Facebook Prophet/1. Prophet Section Introduction.srt  4.1 KB
- 11. VIP GARCH/12. GARCH Code (pt 5).srt  4.1 KB
- 9. Deep Learning Convolutional Neural Networks (CNN)/1. CNN Section Introduction.srt  4.0 KB
- 4. Exponential Smoothing and ETS Methods/1. Exponential Smoothing Section Introduction.srt  3.9 KB
- 10. Deep Learning Recurrent Neural Networks (RNN)/12. RNN Section Summary.srt  3.8 KB
- 17. Appendix  FAQ Finale/1. What is the Appendix.srt  3.8 KB
- 12. VIP AWS Forecast/8. AWS Forecast Exercise.srt  3.6 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/9. Granger Causality Code.srt  3.5 KB
- 4. Exponential Smoothing and ETS Methods/10. Holt's Linear Trend Model (Code).srt  3.4 KB
- 3. Time Series Basics/10. Price Simulations in Code.srt  3.4 KB
- 3. Time Series Basics/3. Modeling vs. Predicting.srt  3.3 KB
- 6. Vector Autoregression (VAR, VMA, VARMA)/1. Vector Autoregression Section Introduction.srt  3.1 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/15. Human Activity Recognition Combined Model.srt  3.0 KB
- 7. Machine Learning Methods/15. Machine Learning Section Summary.srt  3.0 KB
- 4. Exponential Smoothing and ETS Methods/18. SMA Application Algorithmic Trading.srt  2.8 KB
- 8. Deep Learning Artificial Neural Networks (ANN)/17. Artificial Neural Networks Section Summary.srt  2.8 KB
- 5. ARIMA/19. Forecasting Out-Of-Sample.srt  1.7 KB
- 13. VIP Facebook Prophet/How you can help GetFreeCourses.Co.txt  182 bytes
- 4. Exponential Smoothing and ETS Methods/How you can help GetFreeCourses.Co.txt  182 bytes
- 9. Deep Learning Convolutional Neural Networks (CNN)/How you can help GetFreeCourses.Co.txt  182 bytes
- How you can help GetFreeCourses.Co.txt  182 bytes
- 2. Getting Set Up/1.1 Data Links.html  157 bytes
- 2. Getting Set Up/1.2 Github Link.html  143 bytes
- 13. VIP Facebook Prophet/GetFreeCourses.Co.url  116 bytes
- 4. Exponential Smoothing and ETS Methods/GetFreeCourses.Co.url  116 bytes
- 9. Deep Learning Convolutional Neural Networks (CNN)/GetFreeCourses.Co.url  116 bytes
- Download Paid Udemy Courses For Free.url  116 bytes
- GetFreeCourses.Co.url  116 bytes
- 9. Deep Learning Convolutional Neural Networks (CNN)/11.1 Convert a Time Series Into an Image with Gramian Angular Fields and Markov Transition Fields.html  0 bytes
 
    Download Torrent
    
    Related Resources
    
    Copyright Infringement
    
        If the content above is not authorized, please contact us via activebusinesscommunication[AT]gmail.com. Remember to include the full url in your complaint.